
Technion IIT
Department of Computer Science

Fall 2007-8

Course 236603:

Probabilistically Checkable
Proofs

Eli Ben-Sasson

Table of Contents

Lecture 1: Statement of the PCP Theorem

1.1 Trading certainty for computational efficiency 1–1
1.2 Complexity Classes defined by PCP verifiers 1–2
1.3 Two variants of the PCP Theorem . 1–3
1.4 Bibliographical notes . 1–4

Lecture 2: Implications of the PCP Theorem

2.1 Reminder of last lecture’s definitions . 2–1
2.2 Hardness of approximation . 2–1
2.3 A positive result . 2–3
2.4 Bibliographical notes . 2–4

Lecture 3: Exponential Length PCPs part I — The Hadamard code
is Locally Testable

3.1 Encoding proofs via the Hadamard code . 3–1
3.2 The Hadamard codes are locally testable . 3–3
3.3 Bibliographical notes . 3–5

Lecture 4: Exponential Length PCPs part II — Arithmetization

4.1 Arithmetization . 4–2
4.2 Verification . 4–3
4.3 Bibliographical notes . 4–6

Lecture 5: Composition of PCPs of Proximity (PCPP)

5.1 PCPs of Proximity (PCPP) . 5–1
5.2 Proof Composition . 5–3
5.3 Bibliographical notes . 5–4

Lecture 6: Short PCPs based on PCPPs for Reed-Solomon codes

6.1 Proof of the Composition Theorem . 6–1
6.2 PCPPs for Reed-Solomon Codes . 6–2
6.3 PCPPs for Vanishing Reed-Solomon codes . 6–4
4 Bibliographical Notes .

Lecture 7: Short PCPs based on PCPPs for Reed-Solomon codes —
Vanishing RS-codes and Arithmetization

7.1 Pair-Binary-VRS . 7–1
7.2 Algebraic Constraint SAT problem (ACSP) 7–3
3 Bibliographical Notes .

Lecture 8: PCP Proofs Using Gap Amplification

8.1 Introduction . 8–1
8.2 Gap Amplification . 8–1
8.3 Proving The Gap Amplification Theorem . 8–3
8.4 First step — Reduction to expander constraint graphs 8–5
8.5 Bibliographical Notes . 8–5

Lecture 9: Gap Amplification II — Soundness amplification

9.1 The reduction . 9–1
9.2 Validity of the reduction . 9–2

Lecture 10: Parallel Repetition I — Definitions and motivation

10.1 Validity of the reduction - continue . 10–1
10.2 Parallel Repetition - Motivation . 10–2
10.3 Parallel Repetition - Definitions . 10–3

Lecture 11: Parallel Repetition II — Sketch of proof

11.1 Proof of Parallel Repetition Theorem . 11–1

Lecture 12: Towards 3-query PCPs with optimal soundness

12.1 The long code . 12–2

Homework assignments

Assignment 1 . HW–1
Assignment 2 . HW–2
Assignment 3 . HW–4
Assignment 4 . HW–5
1 Bibliographical notes . HW–6
Assignment 5 . HW–7

References

Lecture 1

Statement of the PCP Theorem
January 20th, 2008

Lecturer: Eli Ben-Sasson Scribe: Eli Ben-Sasson

This lecture is devoted to defining formally what a probabilistically checkable proof (PCP) is
and stating a couple of useful variants of the PCP Theorem. In this and the next lecture we
will give examples of applications of (the two variants of) the PCP Theorem and show why
this theorem is justly considered to be one of the great achievements of theoretical computer
science in the past couple of decades.

1.1 Trading certainty for computational efficiency

What constitutes a mathematical proof? Without going into a discussion of mathematical
logic, let us describe a few important properties of formal mathematical proofs. The first and
most important property is that proofs can be checked automatically by a machine. While
finding a mathematical proof may require the elusive properties known as “intelligence”,
“creativity” and “ingenuity”, it is well-known since the beginning of the 20th century that
checking a proof, if properly written, requires no intelligence at all. Proofs can be encoded
formally as a sequence of bits and there exists an algorithm that decides whether a string of
bits is an encoding of a legal proof of a mathematical statement encoded by another string of
bits. In the language of theoretical computer science, we can say that the language consisting
of all true mathematical statements that are implied by a set of axioms (a theory, to use the
terminology of mathematical logic), is decided by a nondeterministic Turing machine. The
nondeterministic choices of our machine on an input statement correspond to the sequence
of bits that encodes a formal proof.
A crucial property that is perhaps overlooked in courses on mathematical logic, is that the
machine that verifies proofs is computationally efficient. If one inspects any of the standard
formalizations of mathematics, as presented in any introductory book to mathematical logic,
one finds that the algorithm that checks whether a string of bits forms a legal proof, runs in
polynomial time in the length of the proof. In fact, in most cases the running time is close to
linear in the length of the proof. Two other properties that are crucial to the definition of a
proof-verifying nondeterministic machine are its completeness and soundness. Completeness
means that every true statement has a proof and soundness means that every statement
that is not true (or is ill-formulated) has no proof.
The PCP Theorem says that the computational efficiency of the proof checking machine and
be greatly increased. For instance, one well-known variant of the theorem (Theorem 1.3)
says that the machine can check proofs by relying on only three randomly selected bits of
the proof. The improved efficiency comes with a price. Our efficient verifier must rely on

1–1

random coin tosses and it may err by either rejecting correct proofs of true statements or by
accepting pseudoproofs of false statements. However, the probability of error in the verifier’s
decision depends only on the number of bits it reads and not on the length of the statement
or the proof. Moreover, the probability of error decreases exponentially with the number
of bits read from the proof, so if we are willing to tolerate a small error probability (say,
2−50) we can check proofs by reading a small constant number of bits from them (150 bits
in the case of error probability 2−50). Another price incurred by using a computationally
efficient verifier is that the proof needs to be written in a special format that facilitates its
efficient verification. The conversion of a “classical” proof into a probabilistically checkable
one increases the length of the proof and requires extra computation on the part of the party
writing down the proof. Fortunately, the conversion can be performed in polynomial time
and the resulting proof length can be made quasilinear, i.e., classical proofs of length n are
transformed into probabilistically checkable ones of length npolylog(n). This length-efficient
variant of the PCP Theorem is stated as Theorem 1.4. Next, we give a formal definition of
the class of languages decided by PCP verifiers.

1.2 Complexity Classes defined by PCP verifiers

At the core of a PCP system lies a verifier — the randomized machine that verifier proofs
of statements. A proof π is usually viewed as a sequence of ` symbols from some finite
alphabet Σ. However, since we will severely limit the number of symbols read from a proof,
we prefer to view it as an oracle, i.e., as a function π : {1, . . . , `} → Σ.

Definition 1.1 (PCP-Verifier). A PCP-verifier, or simply, verifier, is a randomized Turing
machine, denoted V , with access to an oracle which is called a proof oracle, or simply, proof
and is denoted by π. On input x and random coin tosses R ∈ {0, 1}∗, V makes a number of
queries to π and outputs either accept or reject. We denote by V π[x;R] the output of V on
input x, proof π and random coins R.

Being interested in efficient verifiers, we are going to limit some of their computational
resources such as the running time, the number of bits read from the proof and the length
of the proof. Additionally, we will require that the verifier make a correct decision with
sufficient probability. Good proofs of correct statements must be accepted with a minimal
probability called the completeness parameter. Purported proofs of incorrect statements will
be rejected with a minimal probability known as the soundness parameter. The probability
of error in both the completeness and soundness cases depend on the random coin tosses
of the verifier. Both the restrictions and the completeness and soundness parameters may
depend on the length of the input statement that needs to be proved. Once the limitations
on computational resources are placed and the allowed error probabilities are defined we
have effectively defined a complexity class. Any language that can be decided with the
specified certainty probabilities by a resource-limited verifier belongs to this class. The
formal definition follows.

1–2

Definition 1.2 (PCP Class). Given a list of computational restrictions, a completeness
function c : N+ → [0, 1] and a soundness function s : N+ → [0, 1], the complexity class

PCP

(
list of restrictions

∣∣∣∣∣ c(n)
s(n)

)
includes all languages L ⊆ Σ∗ that satisfy the following

conditions.

• Operation: L has a verifier V operating under the listed restrictions and for every
x ∈ Σ∗, |x| = n the following holds.

• Completeness: If x ∈ L there exists a proof π such that

Pr
R

[V π[x;R] = accept] ≥ c(n).

• Soundness: If x 6∈ L then for every proof π,

Pr
R

[V π[x;R] = reject] ≥ s(n).

1.3 Two variants of the PCP Theorem

We next present two variants of the PCP Theorem. The first achieves a nearly optimal
tradeoff between the amount of information read from the proof and the certainty parameters
of the proof. The proof needed for such a process is of polynomial length and the actual
polynomial is quite large. The second variant is very efficient in terms of the length of the
proof, however, the soundness of this theorem is far from optimal.

Theorem 1.3 (PCP Theorem — query efficient and sound). For every proper complexity
function f : N+ → N+ and all ε > 0,

NTIME (f(n)) ⊆ PCP

q ≤ 3
Σ = {0, 1}
nonadaptive

query − type XOR
t(n), `(n) ≤ poly(f(n))
r(n) ≤ log(`(n)) +O(1)

∣∣∣∣∣∣∣∣∣∣∣∣∣
c ≥ 1− ε

s ≥ 1
2 − ε

.

Where

• q denotes the number of queries V makes to the proof oracle.

• Σ denotes the alphabet of the proof. Each query is answered with a single element from
this alphabet.

• nonadaptive means that the set of queries made to the proof and the decision process
based on the answers given by the oracle depend only on x and the random coins R,
and not on answers given by the oracle to previous queries.

1–3

• query − type denotes the class of computations performed by the verifier after receiving
the query answers. In the case of XOR, the computation depends only on the XOR
of the (three) answer bits.

• t(n) denotes the running time of V as a function of the input length.

• `(n) is the length of the proof, or, formally, the largest index of a proof-symbol that
may be queried by V when given input of length n.

• r(n) is the number of random bits required by V on input of length n.

A few remarks about the previous theorem are due. Notice that improving the completeness
or soundness seems unlikely (assuming P 6= NP). If c = 1 and all other parameters are left
unchanged then P = NP because deciding whether a sequence of bits satisfies a collection of
XOR constraints is equivalent to solving a system of linear equations over the two-element
field and can be done (say, by Gaussian elimination) in polynomial time. Similarly, if s
must be less than 1/2 because a random proof (where each bit is selected by a random
coin toss) will be accepted by V with probability 1/2. The optimality of the soundness and
completeness in conjunction with the small query complexity and simplicity of the query
type have far reaching implications to our understanding the limitations of approximation
algorithms and this will be the topic of our next lecture.
Our next variant of the PCP Theorem given nearly optimal proof length and verifier running
time. Thus, it is more tailored for positive applications to efficient checking of proofs and
computations. We will give one example of such an application in our next lecture.

Theorem 1.4 (PCP Theorem — short proofs). There exists an absolute constant ε > 0
such that for every proper complexity function f : N+ → N+,

NTIME (f(n)) ⊆ PCP

`(n) ≤ f(n) · polylog(f(n))
t(n) ≤ f(n) · polylog(f(n))
r(n) = log(`(n)) +O(1)
q ≤ 2
Σ = {0, 1, 2}
nonadaptive

∣∣∣∣∣∣∣∣∣∣∣∣∣
c = 1
s ≥ ε

.

The notation for the list of restrictions is the same as in Theorem 1.3.

1.4 Bibliographical notes

The story of the PCP Theorem and the way its proof evolved is quite interesting. An
illustrated and entertaining description of this history can be found in O’Donnell [Autumn
2005]. Each of the two variants of the PCP Theorem stated in this lecture rely on several
important works. The basic statement of a constant-query PCP characterization of NP
appeared in Arora et al. [1998] and relies on Arora and Safra [1998]. The application of

1–4

the PCP Theorem to efficient program checking (to be discussed in the following lecture)
appeared first in Babai et al. [1991] and the implication of the PCP theorem to hardness
of approximation was first observed in Feige et al. [1996]. The query efficient PCP variant
presented in Theorem 1.3 appeared in Håstad [1997]. It heavily relies on Raz [1998]; Bellare
et al. [1998] as well as on the original proof of the PCP theorem of Arora and Safra [1998];
Arora et al. [1998]. The length-efficient PCP variant presented in Theorem 1.4 appeared in
Dinur [2007]. It heavily relies on Ben-Sasson and Sudan [2005]; Ben-Sasson et al. [2004];
Dinur and Reingold [2004].

1–5

Lecture 2

Implications of the PCP Theorem
January 27th, 2008

Lecturer: Eli Ben-Sasson Scribe: Gadi Aleksandrowicz

2.1 Reminder of last lecture’s definitions

In our last lecture we stated two PCP theorems, and in this lecture we shall see some
of their implications. First, a reminder: We presented the concept of a “PCP-Verifier”
(Definition 1.1) for a nondeterministic language L — a probabilistic Turing machine with
oracle access to a “proof” π which decides if an input x belongs to L by reading a small
random portion of the “proof”. The verifier is subject to many constraints — its running
time is limited, the amount of coin tosses it is allowed to make is restricted, the length of the
proof it reads is bounded, the exact type of computation is uses to decide is not arbitrary,
and most importantly, the number of bits it reads from the proof is small. In spite of all these
limitations, the class of problems our poor verifier can decide is quite large and powerful.
This is because we allow the verifier to toss coins and are willing to tolerate mistakes in the
verifier’s decision, as long as they occur with small probability. We estimate the accuracy of
the verifier by measures of completeness which is the probability that the verifier correctly
recognizes that x ∈ L using a legit π, and soundness, the probability that x /∈ L is rejected,
no matter which π accompanies it.
Later on, in Section 1.3, we stated two PCP theorems, each asserting the existence of a PCP-
verifier with a different set of constraints. The first theorem, Theorem 1.3, was characterized
by an excellent combination of query complexity (3 bits) and soundness — as close as we
wish to 1

2 . However, the price we pay is large (polynomial length) proof size. The second
theorem, Theorem 1.4, trades the soundness (which is a small constant) with a reasonable
sized proof. In this lecture we will see some of the uses of the two theorems.

2.2 Hardness of approximation

Let us focus on how the first version of the PCP theorem can be used to obtain theoretical
results. Namely, that approximating certain problems is NP-hard. First, let us explain what
“approximation” formally means by considering the case of maximization approximation.

Definition 2.1 (Maximization approximation). A maximization problem is defined by a
function OPT : X → N+, where X is the set of inputs.
An algorithm A is called a α (n)-approximation to OPT if for all x ∈ X, |x| = n we have
α (n)OPT (x) ≤ A (x) ≤ OPT (x).

2–1

In order for the definition to make sense we must have 0 ≤ α (n) ≤ 1. The closer α (n) is to
1, the better our approximation.
Now we show a specific example for which the first version of the PCP theorem implies that
“non trivial” approximation of this problem is not likely to exist.

Example 2.2. MAX3LIN2
The input to the problem is a matrix M ∈ Fm×n

2 and a vector b ∈ Fm
2 , where F2 denotes the

two-element field. We assume M has at least one nonzero entry in each row, and no more
than 3 (hence the “3” in the name of the problem; the “2” comes from F2). Note that we
can think of each row of M as defining an equation.
We denote by OPT (M, b) the maximum number of equations that are simultaneously sat-
isfiable by some vector π. Formally,

OPT (M, b) = max
π∈Fn

2

|{i ∈ [n] |Miπ = bi}| .

First we note that there is a simple 1
2 -approximation to this problem - A (M, b) =

⌈
m
2

⌉
.

It is obvious that 1
2OPT (M, b) ≤ A (M, b) since OPT (M, b) ≤ m (one can’t satisfy more

equations than M contains). To prove that A (M, b) ≤ OPT (M, b) we use a probabilistic
argument showing that there is π satisfying at least

⌈
m
2

⌉
of the equations.

Consider the uniform distribution on all π ∈ Fn
2 . For each row i ∈ [m] define a random

variable Zi, such that

Zi =

{
1 Miπ = bi

0 Miπ 6= bi

Now P [Zi = 1] = 1
2 . To see that, let j be an entry of Mi such that Mij 6= 0 (by our

assumptions on M , such j always exists). Partition all π into two sets: T1 = {π|Miπ = bi}
and T2 = {π|Miπ 6= bi}. We show a bijection between T1 and T2. Given π ∈ T1, we map it
to π′ where π′k = πk for all k 6= j, and π′j = 1 − πj . Obviously this function is a bijection
given that π′ ∈ T2; to see this, note that since π ∈ T1 we have∑

k 6=j

Mikπ
′
k − bi =

∑
k 6=j

Mikπk − bi = Mijπj = πj 6= 1− πj 6= π′j

And so
∑n

k=1Mikπ
′
k 6= bi, so π′ ∈ T2.

Since Zi is an indicator random variable, we have E [Zi] = P [Zi] = 1
2 . Now define Z =∑m

i=1 Zi. Obviously Z is the number of equations satisfied by the random choice of π. From
the linearity of expectation we have E [Z] = E [

∑m
i=1 Zi] =

∑m
i=1E [Zi] =

∑m
i=1

1
2 = m

2 ,
and therefore there exists π for which Z ≥ m

2 , and since Z can only have integer values,
Z ≥

⌈
m
2

⌉
.

Hence, A is a 1
2 -approximation for OPT . Can we do any better? It turns out that the PCP

Theorem 1.3 implies that the answer to this question is “probably not much better”.

2–2

Theorem 2.3. If there exists a polynomial algorithm which is a 1
2 + δ-approximation of

MAX3LIN2, for any 1/2 ≥ δ > 0, then P = NP.

Proof. Assume A is a
(

1
2 + δ

)
-approximation for MAX3LIN2. Apply the PCP Theorem 1.3

with ε = δ
4 for any NP-complete language L. We show how to use A in order to decide L

in polynomial time.
Given x ∈ L, |x| = n, the behavior of the verifier V whose existence is asserted by the PCP
theorem can be described by 3LIN2 system of equations: for each possible coin toss R we
define a line in a matrix M ∈ Fr(n)×l(n)

2 , where each nonzero entry represents an index of a
bit that is read from the proof. Since V ’s response is determined by the XOR of the entries
read, we set bi to be the expected result for the randomness i (note that M, b depends on
x).
This system of equations can be generated in polynomial time since r (n) , l (n) are polyno-
mial. Now we use A to determine an approximation to OPT (M, b).
Assume x ∈ L. Then the PCP theorem shows that there exists π ∈ Fl(n)

2 such that Miπ = bi
for at least 1− ε of the rows of the matrix - i.e. 1− δ

4 rows. Therefore,

A (M, b) ≥
(

1
2

+ δ

)
OPT (M, b) ≥

(
1
2

+ δ

)(
1− δ

4

)
=

=
1
2

+ δ − δ

8
− δ2

4
=

1
2

+
7δ − 2δ2

8
≥

≥ 1
2

+
7δ − 2δ

8
=

1
2

+
5δ
8
>

1
2

+ ε

On the other hand, if x /∈ L:

A (M, b) ≤ OPT (M, b) ≤
(

1−
(

1
2
− ε

))
=

1
2

+ ε.

Therefore, to decide L simply check (in polynomial time) whether A (M, b) > 1
2 + ε or

A (M, b) ≤ 1
2 +ε. We conclude that the existence of a polynomial time (1

2 +δ)-approximation
algorithm for MAX3LIN2 implies P = NP, as claimed.

2.3 A positive result

While the first version of the PCP theorem shows us that there is something we cannot do
(given P 6= NP), the second version can be used in a positive manner. Suppose we wish
to download a program from a not-too-trusted website, and also suppose there is a way to
design “proofs” that a given program is not harmful (actual work on this subject is done in
the area of software verification).
Using the second variant of the PCP Theorem stated in the previous lecture, Theorem 1.4,
the software developer can create and store a proof for the harmlessness of his program,
which would be possible for us to check in a relatively small amount of time and without

2–3

need to download the whole proof (which very well might be much bigger than the program)
but only a few bits of information.
Of course, to prevent the software developer from cheating us we need a way to commit
him to the proof before he starts sending bits from it - there are cryptographic primitives
designed specifically for this task.

2.4 Bibliographical notes

As stated in the Lecture 1, the application of the PCP theorem to understanding limitations
of approximation algorithms first appeared in Feige et al. [1996]. Theorem 2.3 appeared in
Håstad [1997]. The application of the PCP theorem to efficient computation verification
appeared initially in Babai et al. [1991]. The addition of cryptographic methods to allow
for efficient proof-checking without downloading the whole proof appeared in Kilian [1992]
and in Micali [2000].

2–4

Lecture 3

Exponential Length PCPs part I — The Hadamard code is
Locally Testable

February 4th, 2008

Lecturer: Eli Ben-Sasson Scribe: Shir Ben-Israel

In this lecture, we are going to start the proof of a weak version of Theorem 1.3. In the
version of this lecture, the verifier will query a constant number of bits (larger than 3) and
the size of the proof will be superpolynomial. Later on, we will improve various parameters
of this construction, most notably, its length and query complexity.
We shall prove the following theorem:

Theorem 3.1. For every proper complexity function f : N+ → N+,

NTIME (f(n)) ⊆ PCP

`(n) ≤ 2f2(n)

t(n) ≤ f2(n)
r(n) = O(f2(n))
q = 16
Σ = {0, 1}
nonadaptive

∣∣∣∣∣∣∣∣∣∣∣∣∣
c = 1
s ≥ 1

200

.

The notation for the list of restrictions is the same as in Theorem 1.3.

3.1 Encoding proofs via the Hadamard code

To prove this theorem, we have to show that for every language L that has a nondeterministic
Turing machine M that decides L and runs in time f(n), we can construct a PCP verifier
with the restrictions, completeness and soundness above.
The naive way would be to ask the prover to write in the proof the nondeterministic choices
made by M . The problem is that in this case the verifier would have to query every bit in
the proof, while we want to create a verifier that reads only a constant number of bits from
the proof.
The first step towards resolving the problem is to replace the machine M with a circuit C
with size f(n). Its input are x′s bits and y - the bits describing the nondeterministic choices
made by M . We have that x ∈ L if and only if there exists y such that C (x, y) = 1.
Next we create a variable for every gate in the circuit C, and specify a constraint for each
gate that specifies that the output of the gate should match the gate type and the inputs to
the gate. For instance, if gi, the ith gate, is an AND gate with inputs coming from gj and
gk, we will require gi = gj ∧ gj . Clearly x ∈ L if and only if there is an assignment to the
gates of C that satisfies all constraints and such that the very last gate evaluates to 1.

3–1

We would like our probabilistically checkable proof to encode an assignment to the gates of
C, such that from the encoding our verifier will be able to query a constant number bits
and get the value of any sum of a subset of the gates. Later on, we shall use these subsums
to verify that the encoded assignment satisfies C.
In particular, our verifier will read the circuit C and the known input x (but recall that the
verifier does not know the nondeterministic decisions specified by y). It will check that the
proof π is a legal encoding of some string of bits, denoted y′. Then it will check that y′

represents an accepting computation of C.
In this lecture, we will discuss the particular encoding that is used to encode the assignment
y and underlies our PCP proof.

Definition 3.2 (Error correcting code). An error correcting code is an injective function
EC : Σk → Σn (for k ≤ n). The code’s message length is k, the blocklength is n, the rate is
k
n , the alphabet is Σ and the relative distance is

d = min
x 6=x′∈Σk

(
∆E (x) , E

(
x′
))
,

where the relative distance between two words is defined to be

∆ (y, z) =
|{i : yi 6= zi}|

n
.

The code C is the set of codewords,

C ⊆ Σn, C =
{
E (x) |x ∈ Σk

}
.

The family of codes used to prove Theorem 3.1 is defined next.

Definition 3.3 (Hadamard code). The k-dimensional Hadamard code encodes k bits by
codewords of length 2k. The alphabet is the two-element field F2. Let α1, . . . , α2k be
an ordering of Fk

2, then the k-bit message a = (a1, ..., ak) ∈ F k
2 is encoded by the 2k-bit

codeword
(〈a, α1〉, . . . , 〈a, α2k〉),

where 〈a, b〉 =
∑k

i=1 aibi. Let Hk be the Hadamard code with k dimensions, i.e., Hk ⊂ F2k

2

is the set of codewords of the k-dimensional Hadamard code. Let Hadamard = {Hk}k∈N+

denote the family of Hadamard codes.

For example, set k = 3 and consider the encoding of the message a = (101) under the
lexicographical ordering of elements of F3

2. The first bit of the coded word will be 〈101, 000〉 =
0. The second bit of the code will be 〈101, 001〉 = 1, and so on. In fact, we can construct
a matrix G (called the generating matrix of the code) such that given a message a, its
codeword is given by G · a. In the case of our 3-dimensional example we have

3–2

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

·

 1
0
1

 =

0
1
0
1
1
0
1
0

.

3.2 The Hadamard codes are locally testable

We would like the proof to contain a Hadamard codeword, or at least to be close to one. Here
we will show that the family of Hadamard codes is locally testable, i.e., there exists a tester
making a few random queries to a purported codeword. Words in the code are accepted
by the tester with probability 1 and words that are far from all codewords are rejected
with probability proportional to their minimal distance from (a word in) the code. The
resemblance of the following pair of definitions to that of a verifier and a PCP complexity
class are of course no coincidence, because the local testability of Hadamard codes will play
a crucial role in the proof of Theorem 3.1.

Definition 3.4 (Tester). A tester for a family of codes of message length k and blocklength
n = n(k) is a randomized Turing machine T with oracle access to a word w of size n. The
tester receives as input a unary string 1k denoting the message length. It tosses random
coins and uses them to choose some bits to read from the word. Based on the bits read it
outputs either accept or reject. We denote by Tw

[
1k, R

]
the output of T on oracle w and

random coins R.

Definition 3.5 (LTC class). Given a list of computational restrictions, completeness func-
tion c : N+ → [0, 1] and soundness function s : N+ × [0, 1] → [0, 1], the complexity class

LTC

(
list of restrictions

∣∣∣∣∣ c(k)s(k, δ)

)
includes all languages (codes) L ⊆ Σ∗ that satisfy the

following conditions.

• Operation: L has a tester T operating under the listed restrictions and for every
x ∈ Σ∗, |x| = n(k) the following holds.

• Completeness: If x ∈ L then

Pr
R

[T x[1k;R] = accept] ≥ c(k).

• Soundness: If x 6∈ L and it is δ-far from L then

Pr
R

[T x[1k;R] = reject] ≥ s(k, δ).

3–3

(We say that w is δ-far from C if for each w′ ∈ C: ∆ (w,w′) ≥ δ).

We are ready to state the main theorem of this lecture, namely, that the family of Hadamard
codes is locally testable with query complexity 3.

Theorem 3.6.

Hadamard ⊆ LTC

t(n) = O(n)
r(n) = 2n
q = 3
Σ = {0, 1}

∣∣∣∣∣∣∣∣∣
c = 1
s(δ) = min

{
δ
2 ,

2
9

}
.

To prove this theorem, we will design a tester for the Hadamard code. The tester runs
under the restrictions above and has the completeness and soundness stated there. It will
be rather easy to show that the tester accepts every code word and that it runs under the
stated restrictions. The hard part will be to prove its soundness. To do this, we will show
that if the rejection probability is low, then our oracle is close to a word of the Hadamard
code.

Proof. The tester of the code Hn operates as follows:

1. Choose a, b ∈ Fn
2 at random.

2. Read wa, wb, wa+b.

3. Accept if and only if wa + wb + wa+b = 0.

Completeness: If w ∈ Hk then there exists m = m1, . . . ,mk ∈ Fk
2 such that wa =

n∑
i=1
miai. Similarly, wb =

n∑
i=1
mibi. Finally,

wa+b =
n∑

i=1
mi (a+ b)i =

n∑
i=1
miai +

n∑
i=1
mibi = wa + wb so the sum of the three bits will be

always 0 and the tester will accept with probability 1 the Hadamard codeword w.

Soundness: Given by the following Lemma, whose proof follows.

Lemma 3.7. Pra,b [Tw [a, b] = rej] = ε < 2
9 ⇒ ∆ (w,H) < 2ε.

Proof of Lemma 3.7. Define the majority codeword φ ∈ F 2n

2 by

φa = majority
b∈F k

2

{wa+b − wb} .

The Lemma follows from the following two statements, discussed next.

1. ∆(φ,w) < 2ε (φ is close to w)

2. φ ∈ Hk

3–4

Proof of 1: Let B be the set of bad indices,

B = {a | φa 6= wa} .

Notice that ∆ (w, φ) = Pra [a ∈ B] so it suffices to bound the probability of a ∈ B. By
assumption, ε = Pra,b [wa + wb 6= wa+b]. By the rule of conditional probabilities

ε ≥ Pr
a

[a ∈ B] · Pr
b

[wa 6= wa+b + w + b | a ∈ B] ≥ Pr
a

[a ∈ B] · 1
2

=
1
2
∆ (φ,w) .

This concludes the proof of 1. The proof of 2 is left to Homework assignment 2. For a proof,
see Ben-Sasson [Fall 2005][Lecture 2].

3.3 Bibliographical notes

The exponential length PCP described in Theorem 3.1 was presented in the original proof
of the PCP Theorem by Arora et al. [1998]. The local testability of the Hadamard code
described in Theorem 3.6 appeared in Blum et al. [1990].

3–5

Lecture 4

Exponential Length PCPs part II — Arithmetization
February 11th, 2008

Lecturer: Eli Ben-Sasson Scribe: Noa Elgrabli and Eyal Granit

We wish to continue with our proof of Theorem 3.1. In order to make things simpler, we
first provide a layout of the proof :
Given a language L ∈ NTIME(f(n)), our goal is to present a PCP verifier for L that
operates under the limitations imposed by Theorem 3.1. Given an input x, the verifier
would need to decide whether x ∈ L or x /∈ L. The verifier will also have access to a
proof oracle, denoted by π, which it will query during it’s operation. Note that while x
and L are given externally, the format of the proof π can be chosen to be anything of our
liking, as long as we can commit ourselves to the completeness and soundness requirements
made by the theorem. So our main question is : What should π encode ? Well, since
L ∈ NTIME(f(n)), there exists a non deterministic Turing machine M , that can decide on
L in time f(n). If indeed x ∈ L, then M has an accepting computation path while operating
on x. If on the other hand x /∈ L, then all the computation paths of M would reject. Thus
we would like π to encode an accepting computation path of M for x. Note however that
we also want to make only a constant number of queries to π. If π would simply encode
the series of operations taken by M while operating on x, the proof length would be f(n),
and the verifier would be unable to verify that π indeed represents a valid and accepting
computation of M for x, without the completeness and soundness arguments being functions
of f(n). Our solution is the following : First we reduce L to CIRCUIT −SAT of size f(n),
converting M to a boolean circuit φ. The accepting computation path of M for x is replaced
by an assignment to the gates of φ, denoted α, such that the values of the gates represent a
valid computation of φ on x, and φ accepts (outputs true). Second, we construct a matrix
representation β for the assignment α, for reasons explained later ∗ . Third, we define π to
be the Hadamard encoding of β. Since Hadamard codes are locally testable, the verifier can
use the local tester we have seen in the last lecture (Theorem 3.6) to check if π is close to a
Hadamard code word, and reject immediately if it’s not (meaning that π contains “garbage”
for our concern). If on the other hand π is close to a Hadamard code word, then the verifier
can use properties of Hadamard encoding to receive large amounts of information about
α, using only a constant number of queries to π. With this at hand, the verifier would be
able to check if α is a valid and accepting computation of φ for x, completing it’s job and
finishing our proof.
The steps of converting the computation path of M to α and β and then to π are called
Arithmetization, since M is basically reduced to a set of equations over F2. The operation

∗For now you may think about α and β as being the same thing, and as you will soon see this is not far
from the truth.

4–1

of the verifier on x and π is called Verification, for obvious reasons. We are now ready to
delve deeper into these two sections of the proof, and we do so, beginning...

right now.

4.1 Arithmetization

First we give a few definitions that would be useful later on.

Definition 4.1. A boolean circuit φ of {and,not} gates with t gates is a set of the boolean
constraints of the following types:

• AND gate: gi = gj · gk for some j, k < i.

• NOT gate: gi = gj + 1 for some j < i.

Where gi is the output of gate i. If we also want the circuit to be satisfied we have the
additional constraint :

• Output gate: gt = 1

Where gt is the output gate.

Definition 4.2. A boolean circuit φ is satisfiable if there exists an assignment A to the
gates of φ that satisfies all the constraints in φ.

We can also represent these constraints as a set of equations over F2 :

Definition 4.3. α ∈ Fk
2 satisfies φ if for every constraint φi in φ :

• φi is an AND constraint: αi = αj · αk

• φi is a NOT constraint: αi = αj + 1

• Output: αt = 1

The last definition used quadric constraints to represent the AND gates of the circuit.
Suppose, however, that the verifier is given an assignment α to φ, encoded into π via the
Hadamard encoding for local testability. The Hadamard encoding, by definition, provides
the verifier with an efficient way to query linear functions of α. Sadly, there is no efficient
way for the verifier to query quadric functions of α, or any other function that is not linear
for that matter (by efficient we mean that the verifier can tell the result of the function,
using only a small, i.e. constant, number of queries). Thus we want to transform the AND
constraints to a linear form, and we do so by converting the vector α to a matrix β, leading
to the following definition :

Definition 4.4. β ∈ Fk×k
2 satisfies φ if the following holds :

4–2

• ∀i, j : βi,j = βi,i · βj,j

• φi is an AND constraint: βi,i = βj,k

• φi is a NOT constraint: βi,i = βj,j + 1

• Output: βt,t = 1

From the definition it is easily seen that in fact, β = α·αT , which is known as the outer prod-
uct α⊗α. The constraints that are dependent on φ have become linear. The first constraint,
which verifies that indeed β = α ·αT , is independent of φ and can be verified efficiently. The
following theorem tells us that Definition 4.3 and Definition 4.4 are equivalent.

Lemma 4.5. α ∈ Fk
2 satisfies φ according to Definition 4.3 ⇐⇒ β = α · αT and β satisfies

φ according to Definition 4.4.

Proof. For the first part, assume that α ∈ Fk
2 satisfies φ according to Definition 4.3, and

let β = α · αT . We wish to show that β satisfies φ according to Definition 4.4. First, it
is easy to see that since β = α · αT , we have α = diag(β), meaning ∀iβi,i = αi. We also
have ∀i, j : βi,j = βi,i · βj,j , thus the first constraint of Definition 4.4 is satisfied. Now,
suppose that φi is an AND constraint, of the form βi,i = βj,k. Since α satisfies φi by
Definition 4.3, we have βi,i = αi = αj · αk = βj,k, so β satisfies φi. Suppose that φi is a
NOT constraint, of the form βi,i = βj,j + 1. Again, since βi,i = αi and α satisfies φi, we
have easily βi,i = αi = αj + 1 = βj,j + 1, and β satisfies this constraint as well. Finally,
suppose that φi is the Output constraint, and again we have βt,t = αt = 1.
For the second part, assume that β = α · αT and β satisfies φ according to Definition 4.4.
We wish to show that α satisfies φ according to Definition 4.3. For an AND constraint φi,
we have as before αi = βi,i = βj,k = αj · αk, so α satisfies this constraint. For a NOT
constraint φi, we have αi = βi,i = βj,j + 1 = αj + 1, so α satisfies this constraint as well.
For the Output constraint we have αt = βt,t = 1, meaning it is also satisfied by α. Thus α
satisfies all the constraints in φ.

That completes our discussion over the encoding of the assignment to φ, and we are now
ready for the next section of the proof.

4.2 Verification

So far we have seen how an assignment to φ is encoded into π. In this section we will show
a PCP verifier which, given input x and oracle access to π, uses π to verify x ∈ L. To make
things more compact, we give the following definition :

Definition 4.6. A linear oracle O is a linear function O : Fk
2 → F2, meaning there exists

β ∈ Fk
2 such that for every a ∈ Fk

2 : O(a) =
k∑

i=1
aiβi

4–3

Note that since π is a Hadamard code word of β, π is also a linear oracle for β according to
the previous definition, by viewing β ∈ Fk×k

2 as a long vector β ∈ Fk2

2 . The PCP verifier is
now described in the following main lemma :

Lemma 4.7. (Arithmetization) There exists a PCP verifier Vlin such that for every circuit
φ of size t = f(n) and for every β ∈ Ft2

2 , if Vlin has an oracle access to a linear oracle O(β)
of β and to a randomness source R, Vlin makes 4 queries to O(β) and the following holds :

• Completeness : if β satisfies φ according to Definition 4.4 then

Pr[V O(β)
lin [φ,R] = accept] = 1

• Soundness : if β does not satisfy φ according to Definition 4.4 then

Pr[V O(β)
lin [φ,R] = reject] ≥ 1

4

Proof. The verifier performs the following steps :

1. Randomly select r, s ∈ Ft
2 uniformly and independently

2. Verify that r · β · s = 0 by making the following queries :

• Q1=
t∑

i=1
riβii

• Q2=
t∑

j=1
sjβjj

• Q3=
t∑

i,j=1
risjβij

and reject if Q1 ·Q2 +Q3 6= 0.

3. Randomly select a subset of the constraints I ⊆ [t] uniformly and independently

4. Verify that the chosen constraints are satisfied by making the query :

• Q4=
∑
i∈I

φi(β)

and reject if Q4 6= 0. Otherwise accept.

From the above description it is clear that Vlin makes exactly 4 queries to O(β). Thus the
main arguments of the proof concern the completeness and (mostly) the soundness require-
ments.

4–4

Completeness Suppose that indeed β = α · αT and α satisfies φ according to Defini-
tion 4.3. Thus we have

∀r, s ∈ Ft
2 : (r · α) · (αT · s) = r · (α · αT) · s = r · β · s

Noting that Q1 and Q2 correspond to r ·α and αT · s respectively (remember that αi = βii),
thus Q1 ·Q2 = (r ·α) · (αT ·s), which by our assumption is equal to r ·β ·s = Q3, and the test
made at step 2 passes. Also, since all the constraints in φ are satisfied by β, then the sum
of any subset of the constraints in φ is 0 given β and the test made at step 4 also passes, so
Vlin accepts with a probability 1.

Soundness Suppose that β does not satisfy φ according to Definition 4.4. We divide the
proof into cases :

1. β 6= α · αT , for α = diag(β).

2. β = α · αT , for α = diag(β), but α does not satisfy φ according to Definition 4.3.

For the first case, we define the difference matrix D to be D = α · αT − β, and by our
assumption D 6= 0, that is, there exist indices (i, j) such that Di,j 6= 0. We wish to show

PrR[(rT · α) · (αT · s) 6= rT · β · s] ≥ 1
4

Note that (rT · α) · (αT · s) = rT · (α · αT) · s and rT · β · s− rT · (α · αT) · s = rT ·D · s. We
make the following claim :

Observation 4.8. For every matrix D 6= 0, Prr,s[rT ·D · s 6= 0] ≥ 1
4

Proof. Since Prr[rT ·D 6= 0] ≥ 1
2 , and in the same way, Prs[D · s 6= 0] ≥ 1

2 , it follows that
Prs[D · s 6= 0|rT ·D 6= 0] ≥ 1

4 , meaning PrR[(rT ·α) · (αT · s) 6= rT · β · s] ≥ 1
4 , which is what

we wanted to show.

For the second case, since not all the constraints of φ are satisfied, we know that φk(β) = 1
for at least one index k. We will show that Pr[Q4 = 1] = Pr[

∑
i∈I

φi(β) = 1] ≥ 1
2 . First we

define two sets A,B ⊆ P([t]) by :
∀X ∈ P([t]) :

X ∈ A⇔
∑
i∈X

φi(β) = 0

X ∈ B ⇔
∑
i∈X

φi(β) = 1

And since I is chosen uniformly over P([t]), showing |A| ≤ |B| will suffice. For that, consider
the injective function F : A→ B, defined by :

F (X) =

{
X \ {k} k ∈ X
X ∪ {k} k /∈ X

4–5

First we need to show that the range of F is indeed B. Let X ∈ A and thus
∑
i∈X

φi(β) = 0.

If k ∈ X, we have
∑
i∈X

φi(β) = 0 ⇒
∑

i∈X\{k}
φi(β) = 1 ⇒

∑
i∈F (X)

φi(β) = 1 and so F (X) ∈ B.

If on the other hand k /∈ X, we have
∑
i∈X

φi(β) = 0 ⇒
∑

i∈X∪{k}
φi(β) = 1 ⇒

∑
i∈F (X)

φi(β) = 1,

and so again F (X) ∈ B.
Now we show that F is injective. Let X1, X2 ∈ A, such that X1 6= X2, and assume without
loss of generality that for some j, j ∈ X1 and j /∈ X2. Assume j 6= k, so j ∈ F (X1) and
j /∈ F (X2), thus F (X1) 6= F (X2). Now assume j = k, so j /∈ F (X1) and j ∈ F (X2), and
again F (X1) 6= F (X2), so F is injective.

To summarize, we have seen that in the first case Pr[V O(β)
lin [φ,R] = reject] ≥ 1

4 , and in
the second case Pr[V O(β)

lin [φ,R] = reject] ≥ 1
2 . Assuming worst case yields Pr[V O(β)

lin [φ,R] =
reject] ≥ 1

4 , and our proof is complete.

The formal proof of Theorem 3.1 is completed in Homework assignment 2.

4.3 Bibliographical notes

The notes are identical to those of our previous lecture. Theorem 3.1 was originally proved
in Arora et al. [1998]. It uses the result stating that the Hadamard codes are locally testable,
as proved in Blum et al. [1990].

4–6

Lecture 5

Composition of PCPs of Proximity (PCPP)
February 18th, 2008

Lecturer: Eli Ben-Sasson Scribe: Yevgeny Reznikov and Omer Karin

In order to progress from the exponential-length PCP described in the previous lectures,
we will introduce the notion of PCPs of Proximity (PCPP) and present the theorem of
proof composition. In the previous lectures, our non-adaptive PCP-verifier worked in the
following manner: First, based on the random coins R it chose a group of queries IR and
built a decision circuit CR. Then, it queried the proof-oracle for IR, assigned input values to
CR (according to the oracle’s responses) and decided whether to accept or reject according
to the output of CR. In proof composition, the verifier goes through the first two steps, but
then, instead of querying the oracle, it recurses on CR and IR: The verifier now verifies that
the random bits IR are themselves a proof for CR. For this the verifier will need oracle access
to y, an implicit input that represents the input assignment to the original decision circuit
(The one which the proof-oracle "proves" to be satisfying), and, in addition, the guarantee
that the original verifier works under the conditions of PCPP. These conditions will now be
presented.

5.1 PCPs of Proximity (PCPP)

Let L be a language in NTIME (f(n)): There exists a non-deterministic Turing Machine
M s.t. L(M) = L. We will use the following definitions:

Definition 5.1 (Pair-Language). The language Pair-L is the language of all the pairs (ϕ, y)
that are accepted by M (where ϕ is the input of M , and y is the “proof” of ϕ ∈ L).

Pair-L = {(ϕ, y) : M(ϕ, y) = accept}

The language Lϕ is the language of all valid proofs y for ϕ being in L.

Lϕ = {y : (ϕ, y) ∈ Pair-L}

We denote by ∆(y, Lϕ) how far y is from being a valid proof for ϕ being in L. It will be
measured by the minimal distance of y from a valid proof y′:

∆(y, Lϕ) =

{
1 Lϕ = ∅
miny′∈Lϕ ∆(y, y′) otherwise

where ∆(y, y′) is the relative Hamming distance between y and y′.

5–1

The action of a PCP verifier V on a boolean circuit ϕ can be defined as a function from it’s
random bits R to the pair: (IR, CR), where IR is a set containing the indexes which V has
chosen to read from the oracles, and CR is the decision circuit generated.

Definition 5.2 (PCPP Verifier). A PCPP Verifier is a non-adaptive, randomized machine
with access to two oracles, the first being an input oracle, and the second being a proof
oracle. We denote by V y,π[ϕ,R] the output of the verifier on input ϕ, input oracle y, proof
oracle π and randomness R. The output of the verifier is a pair: A set of indexes IR (pointing
to locations in y and π) and a decision circuit ϕR.

Definition 5.3 (PCPP Class). Let PAIR-L be some pair language. Then, given a list of
computational restrictions, a completeness function c : N+ → [0, 1] and a soundness function
s : N+ × [0, 1] → [0, 1], it holds that:

Pair-L ∈ PCPP

(
computational restrictions

∣∣∣∣∣ c = 1
s(n, δ)

)
.

Iff there exists a PCPP verifier V which satisfies the computational restrictions, and for
which, for all y, ϕ the following soundness and completeness requirements hold:

• Completeness: If y ∈ Lϕ there exists a proof π such that

Pr
R

[(y, π)|IR
∈ LϕR] = 1.

• Soundness: For every y and for every proof π,

E
R
[∆((y, π)|IR

, LϕR)] ≥ s(n,∆(y, Lϕ)).

Because the completeness is perfect, the soundness condition for y ∈ Lϕ simply requires
that s(n, 0) = E

R
[0] = 0.

We will now show that our PCP-verifier for SAT from Theorem 3.1 can be converted to a
PCPP-verifier for the respective pair language pair-SAT.

Theorem 5.4.

Pair-SAT ∈ PCPP

 q = O(1)
Σ = F2

`(n) = 2n2

∣∣∣∣∣∣∣
c = 1
s(n, δ) ≥ δ

10,000

hh.
Proof. The input of our PCPP verifier will be a boolean circuit ϕ, and it will have oracle
access to the circuit’s implicit input y and to a proof π of y satisfying ϕ. We will use the
Hadamard-based PCP verifier from Theorem 3.1 (denoted V), so the proof π is defined
accordingly. The PCPP verifier will first activate V to check if π is a valid proof for ϕ being
satisfiable, i.e. for ϕ ∈ SAT. If V rejects, then our new verifier will reject as well. If it

5–2

doesn’t reject, then what is left to be checked is that π actually encodes y. To do so, a
random bit from y is chosen and compared with the respective decoded bit from π (the bit
will be locally decoded, using the method proved in Homework assignment 1). The verifier
will accept iff the two bits are the same.
The computational restrictions hold because they hold for V , with some additional ran-
domness and queries required for choosing and decoding the bits when comparing y and π.
The completeness requirement holds since it holds for V , and since if π encodes y, then it’s
comparison to y will obviously succeed. For the soundness requirement, we will note the
following: If Lϕ is empty (φ isn’t satisfiable) then π obviously cannot be an encoding of a
satisfying assignment and when activating V the verifier will reject with probability greater
than 1

200 . If Lϕ 6= ∅, and the PCP verifier rejects with probability smaller than 1
200 , then π

ought to be very close to encoding some satisfying assignment y′. But, since ∆(y, y′) ≥ δ,
when choosing a random bit from y and comparing it to the respective bit in y′, they will
differ with probability at least δ. Thus, when activating the additional test comparing π

and y, we will reject with probability close to δ.
The complete proof of this theorem is given as Homework assignment 3.

5.2 Proof Composition

We will next present the notion of proof composition. Recall that a PCPP verifier outputs
a pair (IR, CR), and accepts iff the restriction of π to indices IR, denoted π|IR

, satisfies the
decision circuit CR. The idea behind proof composition is to act recursively on (IR, CR),
i.e., to prove that π|IR

satisfies CR by using an “inner” PCPP verifier, thus reducing query
complexity. We do the recursion on PCPPs and not on PCPs, because if we recurse on
PCPs we get CR to be a satisfiable circuit, so it will always have a satisfying assignment.

Theorem 5.5 (Proof Composition). For s(n, ·) which is convex and monotonically nonde-
creasing for every n,

If Pair-SAT ∈ PCPP

q(n)
r(n)
`(n)
t(n)
d(n)

∣∣∣∣∣∣∣∣∣∣∣
c = 1
s(n, δ)

Then Pair-SAT ∈ PCPP

q(d(n))
r(n) + r(d(n))
`(n) + 2r(n) · `(d(n))
t(n) + t(d(n))
d(d(n))

∣∣∣∣∣∣∣∣∣∣∣
c = 1
s(d(n), s(n, δ))

.
The theorem will be proved in the next lecture.

5–3

5.3 Bibliographical notes

The use of proof composition as a method for reducing query complexity was introduced
in Arora and Safra [1998]. The original composition theorem was formulated in terms of
PCPs and multi-prover interactive proofs (a concept we have not discussed in class). The
notion of a PCPP was introduced in Ben-Sasson et al. [2004] and in Dinur and Reingold
[2004] under the name “assignment testers” and used there to simplify the construction of
PCP proofs and reduce their length. Similar notions to PCPPs appeared earlier in Ergün
et al. [2000] and also in Szegedy [1999].

5–4

Lecture 6

Short PCPs based on PCPPs for Reed-Solomon codes
February 25th, 2008

Lecturer: Eli Ben-Sasson Scribe: Iddo Bentov

We progress towards a more efficient PCP theorem, in terms of the length of its proof
oracle. We will achieve this result by using encodings that are shorter than Hadamard, and
by composing PCPPs thereby obtaining PCPPs with a proof length of n · polylog(n). To
date, all the PCP theorems with a subexponential proof length are obtained via composition.
We start by proving the composition theorem.

6.1 Proof of the Composition Theorem

Recall Definition 5.3 and let us now prove:

Theorem 5.5 (restated). For s(n, ·) which is convex and monotonically nondecreasing
for every n,

If Pair-SAT ∈ PCPP

q(n)
r(n)
`(n)
t(n)
d(n)

∣∣∣∣∣∣∣∣∣∣∣
c = 1
s(n, δ)

Then Pair-SAT ∈ PCPP

q(d(n))
r(n) + r(d(n))
`(n) + 2r(n) · `(d(n))
t(n) + t(d(n))
d(d(n))

∣∣∣∣∣∣∣∣∣∣∣
c = 1
s(d(n), s(n, δ))

.

We note that d(n) , max
R
|CR| denotes the maximal size of a decision circuit CR generated

by V y,π[C,R] on input of size |C| = n (C and CR are ϕ and ϕR of Lecture 5). We expect
d(n) to be o(n), for example d(n) = log(n) or d(n) =

√
n.

Proof. Define a new verifier V y,π′

composed[C,R ◦R′] that expects a proof oracle of the concate-
nated form π′ = π ◦ {πR : R ∈ {0, 1}r(n)}, where πR ≤ `(d(n)) holds for every R, and
|R′| = r(d(n)).
Thus the length of the proof oracle of Vcomposed is indeed bounded by `(n) + 2r(n) · `(d(n)),
and the randomness of Vcomposed is r(n) + r(d(n)), as required.
Vcomposed first invokes V on the input C by using the random coins R, and receives the
output pair (CR, IR) that V generated. Note that |CR| ≤ d(n). Now Vcomposed invokes

6–1

V yR,πR [CR, R
′], i.e. it runs V with CR as its input, with the random coins R′, and with

yR , (y, π)|IR
and πR as its input and proof oracles. The output of Vcomposed shall be

the output that V generates in this second invocation, and thus the total running time of
Vcomposed is bounded by t(n) + t(d(n)), and the size of the decision circuit that Vcomposed

generates for its output is bounded by d(d(n)). Because V is nonadaptive, Vcomposed can
generate the set of indices IR without actually querying the oracles during the first invocation
of V , and therefore the total number of queries that Vcomposed makes is the number of queries
that V makes in the second invocation, which is bounded by q(d(n)). Thus all the required
computational restrictions hold.

Completeness: If y ∈ LC then there exists a proof π such that for every R it holds
that CR is satisfied by yR = (y, π)|IR

. Therefore, by our assumption on Pair-SAT, there
exists a proof πR, |πR| ≤ `(d(n)), such that V yR,πR [CR, R

′] accepts for every R′. So for
the concatenated proof π′ = π ◦ {πR : R ∈ {0, 1}r(n)}, where each πR is the proof that is
guaranteed to exist for CR, it holds that V y,π′

composed[C,R ◦R′] always accepts.

Soundness: Suppose ∆(y, LC) = δ > 0, so for every proof π we have E
R
[∆(yR, LC)] ≥

s(n, δ), and for any concatenation of small proofs {πR : R ∈ {0, 1}r(n)} we have

E
R,R′

[∆((yR, πR)|IR′ , LCR′)]
linearity of expectation︷︸︸︷

= E
R
[E
R′

[∆((yR, πR)|IR′ , LCR′)]].

Let δR , ∆(yR, LCR
). For a fixed R, it holds that E

R′
[∆((yR, πR)|IR′ , LCR′)] ≥ s(d(n), δR)

according to Definition 5.3, and therefore,

E
R,R′

[∆((yR, πR)|IR′ , LCR′)] ≥ E
R
[s(d(n), δR)] = Σ

R
Pr(R)s(d(n), δR)

convexity︷︸︸︷
≥ s(d(n),Σ

R
Pr(R)δR)

= s(d(n),E
R
[δR]) = s(d(n),E

R
[∆(yR, LC)])

monotonicity︷︸︸︷
≥ s(d(n), s(n, δ))

6.2 PCPPs for Reed-Solomon Codes

Our next objective is to prove, using PCPPs, the following theorem:

6–2

Theorem 6.1 (Quasilinear PCP).

SAT ∈ PCP

` = n · polylog(n)
q = O(1)
Σ = F2

nonadaptive

t = nO(1)

r = log(`) +O(1)

∣∣∣∣∣∣∣∣∣∣∣∣∣
c = 1
s(n) ≥ 1

polylog(n)

.

Note: ` = n · polylog(n) is beyond the scope of this course. Instead, we will settle for
` = n2 · polylog(n).

To obtain PCPs with short proof lengths, as in Theorem 6.1, we obviously cannot use the
exponential size Hadamard encoding. Therefore, we now wish to encode proofs with a more
efficient code than Hadamard. We will use Reed-Solomon codes, which do not have good
local testability properties in comparison to the Hadamard code. However, with the use of
PCPPs we shall achieve the same effect as that of a local tester. Namely, by using a few
queries we will be able to distinguish with high probability between codewords and words
that are far (in Hamming distance) from the code.

Definition 6.2 (Reed-Solomon code). Let F be a finite field, |F| = n. The Reed-Solomon

code RS(k,F) transforms a message (a0, a1, . . . , ak−1) ∈ Fk to the codeword
〈

k−1∑
i=0

aix
i|x ∈ F

〉
∈

Fn.

Thus the message length is k, the blocklength is n, the alphabet is F, and the code distance
is n − k + 1 because two distinct polynomials of degree k − 1 can agree on at most k − 1
points, so the rest of the coordinates must differ. Reed-Solomon is a linear code, because
k−1∑
i=0

aix
i +

k−1∑
i=0

bix
i =

k−1∑
i=0

(ai + bi)xi. Reed-Solomon is also a locally testable code, in the sense

that there is exactly one polynomial of degree k − 1 that passes through k points, so k + 1
queries can be used to test a code word. However, in our setting k will be too large a query
complexity to tolerate, so we shall rely on PCPPs for the natural family of pairs induced by
the Reed-Solomon code.

Definition 6.3 (Pair-RS). Pair-RS = {((F, k), p : F → F)} where for every such ((F, k), p) :

• k < |F|
10

• deg(p) < k (in other words, p ∈ RS(F, k))

For a pair ((F, k), p : F → F), we regard its first element (F, k) as the explicit input of the
verifier, and its second element p : F → F as the implicit (oracle) input of the verifier.

6–3

Definition 6.4 (Pair-bin-RS). Pair-bin-RS (Pair-RS is the language for which we
require char(F) = 2, i.e. |F| = 2q for some q ∈ N, and we can regard the elements of F as
q-tuples of bits.

Theorem 6.5.

Pair-bin-RS ∈ PCPP

` = n · polylog(n)
q = O(1)
Σ = F
nonadaptive

t = nO(1)

∣∣∣∣∣∣∣∣∣∣∣
c = 1
s(n, δ) ≥ δ

polylog(n)

Where n = |F| (or |F| log |F| in bits).

The verifier will use this PCPP as a replacement for the local testability properties of the
Hadamard code. Namely, the verifier will use this PCPP to test whether certain polynomials
that are encoded in the proof are Reed-Solomon codewords, i.e. whether these polynomials
meet the required condition on their maximal degree.
Note: the proof of this theorem is beyond our scope, so we will use it as a black box instead.

6.3 PCPPs for Vanishing Reed-Solomon codes

Let us now define an additional PCPP, which will be a crucial building block in the proof of
Theorem 6.1. Specifically, this PCPP will be used to reduce the problem of checking generic
SAT constraints to the problem of checking whether a single polynomial vanishes on many
points.

Definition 6.6 (Pair-Vanishing-RS). Pair-Vanishing-RS = {((F, k,H), p : F → F)}
where for every such ((F, k,H), p) :

• H ⊆ F

• ((F, k), p) ∈ Pair-RS

• ∀α ∈ H : p(α) = 0

Theorem 6.7.

If Pair-bin-RS ∈ PCPP

`RS = n · polylog(n)
qRS = O(1)
Σ = F
nonadaptive

tRS = nO(1)

∣∣∣∣∣∣∣∣∣∣∣
c = 1
sRS(n, δ) ≥ δ

polylog(n)

6–4

Then Pair-Vanishing-RS ∈ PCPP

`VRS = n+ 2 · `RS

qVRS = 2 · qRS +O(1)
Σ = F
tVRS = O(tRS)

∣∣∣∣∣∣∣∣∣
c = 1
sVRS(n, δ) ≥ sRS(n,δ)

10

.
This theorem will be proven in the next lecture.

6–5

4 Bibliographical Notes

Bibliographical notes regarding proof composition appeared in our previous lecture, see
Section 5.3. The short PCPPs for Reed-Solomon and vanishing Reed-Solomon codes stated
in Theorem 6.5 and Theorem 6.7 respectively, are from Ben-Sasson and Sudan [2005].

Lecture 7

Short PCPs based on PCPPs for Reed-Solomon codes —
Vanishing RS-codes and Arithmetization

March 3rd, 2008

Lecturer: Eli Ben-Sasson Scribe: Omer Karin

In this lecture we will finish the proof of Theorem 6.1. Using the black box PCPP verifier for
Pair-Binary-RS, we will construct a PCPP verfier for the language Pair-Binary-VRS.
With those verifiers at hand, we will be able to build a PCP verifier with short proof-length
for a (complete) algebraic language ACSP, thus proving the theorem.

7.1 Pair-Binary-VRS

In the last lecture we defined the code RS(F, k), as the language of all functions P : F → F
such that P represents the evaluation of some polynomial of degree less than k on F. The
language Pair-Binary-RS was defined as the language of all triplets (F, k, P : F → F) such
that char(F) = 2, k ≤ |F|

10 and P ∈ RS(F, k). We have also stated Theorem 6.5 that says
Pair-Binary-RS has PCPPs with quasilinear length. We also defined (in Definition 6.6)
the language Pair-Binary-VRS that is very similar to Pair-Binary-RS, but with the
additional requirement that the polynomial p vanishes on all points of a set H (the set H is
also supplied in the input). Our first step in this lecture is to prove that Pair-Binary-VRS
also has short PCPPs. We restate the relevant theorem from Lecture 6.

Theorem 6.7 (restated).

If Pair-bin-RS ∈ PCPP

`RS = n · polylog(n)
qRS = O(1)
Σ = F
nonadaptive

tRS = nO(1)

∣∣∣∣∣∣∣∣∣∣∣
c = 1
sRS(n, δ) ≥ δ

polylog(n)

Then Pair-Vanishing-RS ∈ PCPP

`VRS = n+ 2 · `RS

qVRS = 2 · qRS +O(1)
Σ = F
tVRS = O(tRS)

∣∣∣∣∣∣∣∣∣
c = 1
sVRS(n, δ) ≥ sRS(n,δ)

10

.

Proof. From basic algebra, it holds that for some α ∈ F and some polynomial P : F → F, α

7–1

is a root of P iff (x− α) | P (x), i.e iff:

∃P̃ (x), deg P̃ = degP − 1, s.t P̃ (x)(x− α) = P (x)

We define PH(x) ,
∏

h∈H(x− h). From the above it follows that P vanishes on H iff:

∃P̃ (x), deg P̃ = degP − |H|, s.t P̃ (x)PH(x) = P (x)

We will now begin proving the theorem, assuming we are given the PCPP verifier VRS for
Pair-Binary-RS.
The PCPP verifier VV RS for Pair-Binary-Vanishing-RS will be defined as following: Let
πRS be the proof (for the verifier VRS) for ((F, k), P) ∈ Pair-Binary-RS, let P̃ be the
polynomial for which P̃ (x)PH(x) = P (x) and let π̃RS be the proof for ((F, k − |H|), P̃) ∈
Pair-Binary-RS. The proof for ((F, k,H), P) ∈ Pair-Binary-VRS will be the concate-
nation of π̃RS , πRS , P̃ .
VV RS will activate V P,π

RS [F, k] and V
eP ,eπ

RS [F, k], and will reject if either of the two rejects. If they
both accept, it will uniformly pick a field element α ∈ F, and will reject if p̃(α)pH(α) 6= p(α).
If all three tests ended successfully, it will accept. Completeness holds from the discussion
in the beginning (and because the verifier VRS works with perfect completeness), and the
computational requirements are obviously held.
Soundess: We assume that P is δ-far from any polynomial of degree less than k which
vanishes on H. There are two options:

1. If P is δ
100 far from any polynomial of degree less than k, then V P,π

RS [F, k] will reject
with probability greater than δ

polylog(n) .

2. P is δ
100 -close to some polynomial of degree less than k, this polynomial, denoted P̂ ,

must be unique because k < |F|/10. Furthermore, by assumption P̂ does not vanish
on H. There are two final subcases to consider.

(a) If P̃ is 1
100 -far from all polynomials of degree k − |H|, then V

eP ,eπ
RS [F, k] will reject

with probability high enough.

(b) Otherwise, P̃ is 1
100 -close to a unique polynomial of degree k−|H|, so P̃PH is 1

100

close to a polynomial of degree k, ˆ̂
P . Since ˆ̂

P vanishes on H and P̂ doesn’t vanish
on H, it must be that P̂ 6= ˆ̂

P , and they disagree on at least 9
10 of the points in

F (because k < |F|
10). Thus, in this very last case the rejection probability of the

third test of VV RS is at least:

1− 1
10

− 2 · 1
100

>
1
2
>

δ

polylog(n)

This completes the soundness analysis and with it Theorem 6.7 is proved.

7–2

7.2 Algebraic Constraint SAT problem (ACSP)

We the PCPPs for pair-binary-RS and pair-binary-VRS we have the analog of the local
tester and decoder for Hadamard codes used to construct exponential length PCPs. The
final part is an arithmetic NP-complete language that “goes along” with RS-codes. This
language is similar to the language MATRIXSAT defined in Homework assignment 2 and
used in PCPs that are based on Hadamard codes.

Definition 7.1 (Algebraic Constraint Satisfaction Problem (ACSP)). An instance
of size t of ACSP is a tuple φ = (F,H, L1, L2, L3, C

0, C1) where

• F is a finite field of characteristic 2 and 100dt2 < |F| ≤ 200dt2, where d is an absolute
constant (defined in Theorem 2).

• H ⊂ F, |H| = t2.

• L1, L2, L3 are linear functions from F to F, i.e. Li : F → F is given by Li(x) = aix+bi.

• C0 is a univariate polynomial of degree at most d.

• C1 is a polynomial in four variables, C1(x, y1, y2, y3) where degx(C1) ≤ |H| and
degyi

(C1) ≤ d.

An assignment to φ is a univariate polynomial A,deg(A) ≤ |H|. We say that A satisfies φ
iff

• C0(A(h)) = 0 for all h ∈ H.

• C1(h,A(L1(h)), A(L2(h)), A(L3(h)) = 0 for all h ∈ H.

The language ACSP contains all satisfiable instances.

We show the NTIME (t)-completeness of ACSP by reducing the NTIME (t)-complete
language Domino to it. The reduction and completion of the proof of Theorem 6.1 is given
as Homework assignment 4.

7–3

3 Bibliographical Notes

The quasilinear PCPPs based on RS- and VRS-codes presented in this and the previous
lecture appeared in Ben-Sasson and Sudan [2005].

Lecture 8

PCP Proofs Using Gap Amplification
March 10th, 2008

Lecturer: Eli Ben-Sasson Scribe: Gitit Raz and Amit Feller

8.1 Introduction

We saw the following:

Theorem 8.1.

NTIME (f(n)) ⊆ PCP

`(n) = f(n)polylog(f)(n)
q = O(1)
Σ = F2

t(n) = f(n)O(1)

∣∣∣∣∣∣∣∣∣
c = 1
s ≥ 1

polylog(()f(n))

.
The notation for the list of restrictions is the same as in Theorem 1.3.
Actually: q=2, |Σ|=O(1)

Our next topic is a recent new proof of the PCP Theorem due to Dinur [2007]. The key
step of this proof, the Gap Amplification Theorem stated next, is a reduction that retains
query complexity and alphabet size but doubles the soundness. Using this reduction, we
can start with a simple PCP that has small alphabet size and query complexity, but very
weak soundness. Applying the gap amplification lemma enough times, we obtain the PCP
Theorem. Additionally, if we start with a relatively sound PCP system as in Theorem 8.1
then we can obtain PCPs with constant soundness and query complexity and quasilinear
length proofs.

8.2 Gap Amplification

In this lecture (and the next) we will focus on proving the following theorem. It says that
if a language L has a PCP verifier with a certain setting of parameters, and the soundness
obtained by this verifier is not so good, then we can create a new PCP verifier, with almost
no changes to parameters, and with double the soundness. Informally, we double soundness
while slightly decreasing other parameters (such as proof-length).

Theorem 8.2 (Gap Amplification Theorem). There exists a constant size alphabet Σ and

8–1

constant smax > 0 such that

PCP

` = `0(n)
q = 2
Σ
r = r0(n)
nonadaptive

∣∣∣∣∣∣∣∣∣∣∣
c = 1
s = s0(n)

 ⊆ PCP

`1(n) = O(`0(n))
q = 2
Σ
r1(n) = r0(n) +O(1)
nonadaptive

∣∣∣∣∣∣∣∣∣∣∣
c = 1
s(n) ≥ min{2s0(n), smax}

.

A few comments regarding the previous theorem are due.

• Notice soundness doubles on the right side of the containment.

• The alphabet size can probably be taken to be 3.

First, we notivce Theorem 8.2 implies PCPs with constant soundness, query complexity and
quasilinear length proofs.

Corollary 8.3.

NTIME (f(n)) ⊆ PCP

 `(n) = f(n)polylog(f(n))
q = 2
|Σ| = O(1)

∣∣∣∣∣∣∣
c = 1
s > 0

.
The notation for the list of restrictions is the same as in Theorem 1.3.

Proof. Start from Theorem 8.1 and apply Theorem 8.2 O(log log n) times so that the length
of the final proof will increase by a factor of 2O(log log n) = polylog(n) and the soundness will
increase by a factor of 2O(log log n) = polylog(n).

Next we notice that Theorem 8.2 implies a query-efficient, constant-soundness PCP Theo-
rem, albeit with polynomial length proofs.

Corollary 8.4.

NTIME (f(n)) ⊆ PCP

 `(n) = f(n)O(1)

q = 2
|Σ| = O(1)

∣∣∣∣∣∣∣
c = 1
s > 0

.
The notation for the list of restrictions is the same as in Theorem 1.3.

Proof. Start with an NTIME (f(n))-complete language L that is defined over constraints
over two-variables, like 3COLOR. Since every x 6∈ L has the property that every assignment

8–2

falsifies at least one constraint, we get

NTIME (f(n)) ⊆ PCP

 `(n) = f(n)
q = 2
|Σ| = O(1)

∣∣∣∣∣∣∣
c = 1
s(n) ≥ 1

f(n)

.
Use Theorem 8.2 log(f(n)) times. We will get the soundness of smax and a maximal length
of `0(n) ≥ f(n)O(1)

To summarize, we have seen two corollaries from Theorem 8.2:

1. We got the PCP theorem easily by using Theorem 8.2 log(n) times.

2. We got a PCP verifier with very short proofs.

Intuitively, what we have is soundness amplification in return for a longer proof. If we start
off from a good starting point (good soundness, short proofs - which is Theorem 8.1), then
we only need to use Theorem 8.2 a small number of times to get to Corollary 8.3.

8.3 Proving The Gap Amplification Theorem

We are stepping towards proving Theorem 8.2. The main part of the proof is the gap
amplification. To prove this theorem it will be useful to argue about constraint graphs
defined next.

Definition 8.5 (Constraint-Graph). A Constraint-Graph (CG) is a triple G = (G,Σ, C)
where G = (V,E) is an undirected graph, possibly containing self loops and multiple edges.
Σ is an alphabet. C is a group of constraints, one for each edge: C = {Ce : Σ× Σ → {accept, reject}|e ∈ E}

Definition 8.6 (Assignment). An assignment is a function A : V → Σ, where each vertex
is assigned a letter from the alphabet.

Definition 8.7 (Soundness of an Assignment). We will define the soundness of an assign-
ment A, as the fraction of the constraints that are not satisfied:

s(A,G) = Pr
e∈E,e(u,v)

[Ce(A(u), A(v)) = reject].

The soundness of a constraint graph is the minimal soundness of some assignment for it,

s(G) = min
A:V→Σ

S(A,G).

For our next definition we need to recall the notion of a promise problem. We can look
at a language as a partition of the set of words Σ∗ into YES-instances (belonging to the
language), and NO-instance (that don’t belong to the language). A promise problem is also
a partition of Σ∗, but into three sets, the third set being DON’T CARE-instances. The

8–3

intuition behind a promise problem is that it is a relaxation of a decision problem in which
our algorithm needs to succeed only on the words we care about.

Definition 8.8 (Gap-CG). Let n be the number of edges or constraints in a constraint
graph G. For a soundness function ŝ : N+ → [0, 1] the language Gap-CG (Σ,S) is a promise
problem defined by

• YES: {G = (G,Σ, C)|s(G) = 0}.

• NO: {G = (G,Σ, C)|s(G) ≥ ŝ(n)}.

Theorem 8.9 (Theorem 8.2 restated with constraint graphs). For every large enough Σ,
there exists a constant smax = smax(|Σ|) > 0 such that: Gap-CG (Σ,s(n)) is reducible to
Gap-CG (Σ,min(2s(n), smax(|Σ|))), in polynomial time, and the reduction increases graph
size only by a constant.

Proof. We prove that there exist constants c1, c2, c3 > 1 such that c2
c1·c3 ≥ 2 and the following

three reductions hold. An arrow designates a polynomial time reduction that blows up the
size of the constraint graph by a constant. We follow the diagram with an overview of the
three steps.

Gap-CG (Σ, s0(n) = s(n))

↓
Expander-Gap-CGd, 1

2

(
Σ, s1(n) ≥ s0(n)

c1

)
↓

Gap-CG
(
Σ̂(|Σ̂| >> |Σ|), s2(n) ≥ c2 · s1(n)

)
↓

Gap-CG
(
Σ, s3(n) ≥ s2(n)

c3

)
Expanding In this first stage we rearrange the graph and make it an expander graph
(defined below), at the cost of decreasing the soundness by a factor of c1. This restructuring
step is a combinatorial analog of the arithmetization process described in previous lectures.

Amplification In the second and main stage, we increase the soundness by c2, but the
alphabet will also increase by a constant factor.

Alphabet reduction In this last stage we decrease alphabet size by composition with a
small-alphabet PCPP, but once again the soundness decreases by a factor c3.
Summing up over the three steps, the graph size increases by a constant, the alphabet stays
the same, and the soundness increases by c2

c1·c3 ≥ 2.

8–4

8.4 First step — Reduction to expander constraint graphs

Expander graphs have numerous applications in computer science and in mathematics. The
construction of these graphs and the study of their properties are receiving a lot of attention
in recent years. In what follows, we define these graphs only in terms of the combinatorial
properties that will be needed in our proof.

Definition 8.10 (Expander Graph). A graph G is a said to be a (d, λ)-expander if G is
d-regular (each vertex has exactly d edges connected to it) and the following conditions hold

1. Vertex expansion - ∀S ⊆ V, |S| ≤ |V |
2 : |E(S, S)| ≥ d−λ

2 ∗ |S|

2. Random walk expansion - ∀F ⊆ E,∀i ≥ 0 : the probability that a random walk
starting from a random edge in F will do the i+ 1 step inside F is at most λ

d

i
+ |F |

|E|

Two brief bits of information about the expansion parameter λ in the previous definition.

• It is known that λ is at least 2
√
d− 1. Explicit constructions of graphs achieving this

λ are known, and these graphs are known as Ramanujan expanders.

• The smaller λ is in relation to d, the better.

We shall need to use expander graphs in our construction. The following Theorem states
that such graphs can be constructed. The proof of this theorem can be found, e.g., in
Margulis [1973]; Gabber and Galil [1981]; Lubotzky et al. [1988]; Reingold et al. [2000].

Theorem 8.11. For each ε > 0, there exists d such that for every n, it is possible to create
a graph that is (d, ε ∗ d)-expander with size n, and in poly(n) time.

Definition 8.12 (Gap−CG(d,λ)(Σ, s(n))). Gap−CG(d,λ)(Σ, s(n)) is the promise problem
that includes all the graphs that are (d, λ)-expanders.

The very first step in our proof of Theorem 8.9 is given by the following lemma. Its proof is
part of Homework assignment 5.

Lemma 8.13. There exists c1, d > such that there is a polynomial time and linear size
reduction for: Gap− CG(Σ, s0(n)) → Gap− CG(d, 1

2
)(Σ, s1(n) ≥ s0(n)

c1
)

8.5 Bibliographical Notes

The proof of the PCP Theorem by Gap Amplification, which is the topic of this and our next
lecture, appeared in Dinur [2007]. An exposition of this proof can be found in Radhakrishnan
and Sudan [2007].

8–5

Lecture 9

Gap Amplification II — Soundness amplification
March 17th, 2008

Lecturer: Eli Ben-Sasson Scribe: Viaceslav Chernoy

We start by recalling the main theorem.

Theorem 9.1 (main). For every sufficiently big Σ, there is a constant smax = smax(Σ) > 0,
such that Gap-CG (Σ, s(n)) problem may be polynomially reduced to Gap-CG (Σ,min(smax, 2s(n))
problem.

Note. For small Σ, say |Σ| = 2, the theorem is not true, unless P = NP.

The proof of the theorem consists of three polynomial time reductions depending on con-
stants c1, c2, c3 > 1:

Gap-CG (Σ, s0(n))

↓
Expander-Gap-CGd, d

2

(
Σ, s1(n) ≥ s0

c1

)
↓

Gap-CG
(
Σ̂, s2(n) ≥ min{smax, c2 · s1(n)}

)
↓

Gap-CG
(
Σ, s3(n) ≥ s2(n)

c3

)
Arguing that c2

c1·c3 ≥ 2 completes the proof of the theorem.

In the previous lecture and in Homework assignment 5 we showed the first reduction that
builds a d-regular graph from any constraint graph. The main idea was to extend the graph
by adding O(1) edges with weight 0. In this case the soundness decreases by a factor of
c1. In this lecture we discuss the second reduction, which is presented in Section 9.1. Its
validity is proved sketchily in Section 9.2.

9.1 The reduction

Assume we are given a d-regular constraint graph G = (G(V,E),Σ, C) with loops and an
even constant t > 0. The reduction builds a constraint graph Gt that depends on an integer
parameter t.

Definition 9.2 (Constraint Graph Gt). Constraint graph Gt is a triple (Gt(V,Et),Σdt
, Ct),

where Et and Ct are defined as follows. For every path p = v0 → v1 → . . .→ vt of length t
in the graph G, multi-set Et contains an edge ē = (v0, vt), and set Ct contains a constraint

9–1

Cē : Σdt × Σdt → {accept, reject}. Where Cē(l1, l2) = accept iff the assignment of l1, l2 to
balls of radius t with centers in v0, vt is consistent with the path p and satisfies all constraints
C(vi,vi+1).

We say that the edge ē is created by the path p. Sometimes we make no distinction between
the edge in Gt and the path in G.

Definition 9.3 (Assignment At for Gt). An assignment for a constraint graph Gt is a
function At : V → Σdt .

Consider a vertex v ∈ V . All vertices reached from v by some path of the length r form
a ball of radius r. Formally, Ballv (r) = {u ∈ V |∃p = v → . . .→ u ∈ G, |p| = r}. Clearly,
|Ballv (r) | = d

d−2((d− 1)r − 1) ≤ dr.
Informally, At(v) = (σ1, . . . , σdt) ∈ Σdt means that vertex v has opinion regarding values
assigned by At to all the vertices in Ballv (t). Let’s denote by At

u(v) = σ the opinion of v
regarding a value assigned to u. Then At satisfies Cē, iff the opinions of v0 and vt regarding
values assigned to vertices vi in the path are consistent, i.e., ∀0 ≤ i ≤ t, At

vi
(v0) = At

vi
(vt),

and all constrains C(vi,vi+1) are satisfied, i.e., ∀0 ≤ i < t, C(vi,vi+1)(At
vi

(v0), At
vi+1

(v0)) =
accept.
In the next section, we focus on proving the reduction validity, that is, we show its complexity
and soundness satisfy the conditions of Theorem 9.1.

9.2 Validity of the reduction

Complexity Since t and d do not depend on the size of G, the reduction yields a constraint
graph that has |Et| ≤ dt · |E| = O(|E|) edges and alphabet of size |Σ̂| = |Σdt | = |Σ|dt

=
|Σ|O(1). This proves that the reduction is polynomial.

Completeness If G has a valid assignment A, then it may be used for constructing a valid
At assignment to Gt as follows. We define the opinion of a vertex v regarding a value of
a vertex u to be the actual value assigned to it, i.e., At

u(v) = A(u). Then for every edge
ē, the opinions of v0 and vt are consistent: At

vi
(v0) = A(vi) = At

vi
(vt), and the constraints

C(vi,vi+1) are satisfied: C(vi,vi+1)(At
vi

(v0), At
vi+1

(v0)) = C(vi,vi+1)(A(vi), A(vi+1)) = accept.
Hence completeness holds.

Soundness Consider the soundness of Gt. We start by reconstructing an assignment Â to
G from an assignment At to Gt. It will help us to prove the soundness of the reduction.

Definition 9.4. Given an assignment At to Gt, define Â : V → Σ as follows: Â(v) =
arg maxσ∈Σ Pr[a random walk of length t

2 starting at v ends at w s.t. At
v(w) = σ].

By Definition 9.4, we immediately get that Prw[At
v(w) = Â(v)] ≥ 1

|Σ| .

Using assignment Â, we formulate the following lemma, which implies soundness of the
reduction and, particularly, Theorem 9.1.

9–2

Lemma 9.5 (Main). For every even t and every constraint graph G over (d, λ)-expander
with loops and for every assignment At : V → Σdt , there exists a constant β = β(λ, d, |Σ|),
such that s(Gt, At) ≥ β

√
tmin{s(G, Â), 1

t }.

Lemma 9.5 immediately implies soundness of the reduction:

Lemma 9.6 (Soundness of Gt). Given β, t as above, then s(Gt) ≥ β
√
tmin{s(G), 1

t } holds.

Proof. By Definition 8.7, we get that for any assignment A, s(G, A) ≥ s(G) (the same for
At and Gt). Assuming that At is the "best" assignment to Gt, and applying Lemma 9.5 to
it, we get s(Gt) = s(Gt, At) ≥ β

√
tmin{s(G, Â), 1

t } ≥ β
√
tmin{s(G), 1

t }

We start to prove main lemma by introducing new definitions and proving some claims.

Definition 9.7. F = {(u, v) ∈ E|C(u,v)(Â(u), Â(v)) = reject}.

Informally, F ⊆ E is a set of edges having constraints that Â violates. By Definition 8.7,
|F | = |E| · s(G, Â). Clearly,

|F |
|E|

≥ min{s(G, Â),
1
t
}. (1)

Definition 9.8. We say that a path ē = (v0, . . . , vt) is hit by a position i (i.e., by edge
(vi−1, vi)), if (vi−1, vi) ∈ F , At

vi−1
(v0) = Â(vi−1), At

vi
(vt) = Â(vi).

Definition 9.9. I = { t
2 −

√
t
2 , . . . ,

t
2 +

√
t
2}.

Definition 9.10. N(ē) = |{i ∈ I|ē is hit by i}|.

Clearly, if ē is hit by some i, then Cē(At(v0), At(vt)) = reject.

Claim 11. Exē[N(ē)] ≥ Ω(
√
t) · |F ||E| .

Claim 12. Exē[(N(ē))2] ≤ O(
√
t) · |F ||E| .

Fact 9.13. If a random variable X ≥ 0 is not identical to 0, then Pr[X > 0] ≥ (Ex[X])2

Ex[X2]
.

Proof of Fact. Let 1X>0 be the indicator random variable for the event X > 0. By the
Cauchy-Schwartz inequality, Ex[X] = Ex[X ·1X>0] ≤

√
Ex[X2]×

√
E[12

X>0] =
√

Ex[X2]×√
Pr[X > 0]. Then we get (Ex[X])2 ≤ Ex[X2] · Pr[X > 0].

Assuming Claim 11 and Claim 12 hold we may prove the main lemma as follows:

9–3

Proof of Lemma 9.5.

s(Gt, At)
(Definition 9.8)

≥ Pr
ē∈Et

[N(ē) > 0]

(Fact 9.13)

≥ (Ex[N(ē)])2

Ex[(N(ē))2]
(Claim 11,Claim 12)

≥ Ω(
√
t) · |F |

|E|
(Equation 1)

≥ Ω(
√
t) ·min{s(G, Â),

1
t
}.

Now we return to the proof of Claim 11.

Proof of Claim 11. We introduce an indicator random variable Ni(ē) for the event “ ē is hit
by i”. Then, N(ē) =

∑
i∈I Ni(ē), and Exē[N(ē)] =

∑
i∈I Exē[Ni(ē)] =

∑
i∈I Prē[Ni(ē)].

Let’s fix some i ∈ I and build a random path ē as follows.

1. Choose edge (vi−1, vi) randomly.

2. Choose randomly paths of length i− 1 and t− i starting from vertices vi−1 and vi.

3. Build ē from these two paths and from the edge (vi−1, vi).

The edge ē is randomly chosen, because the graph G is d-regular. Then we get

Pr̄
e

[Ni(ē)] = Pr̄
e

[i hits ē]

= Pr̄
e

[
(vi−1, vi) ∈ F ∧At

vi−1
(v0) = Â(vi−1) ∧At

vi
(vt) = Â(vi)

]
≥ Pr̄

e
[(vi−1, vi) ∈ F] · pv0 · pvt =

|F |
|E|

· pv0 · pvt ,

where pv0 = Prv0 [A
t
vi−1

(v0) = Â(vi−1)], and pvt = Prvt [At
vi

(vt) = Â(vi)].
Since for i = t

2 , the following holds:

pv0 = pvt = Pr
w

[
At

v t
2

(w) = Â(v t
2
)
]
≥ 1
|Σ|

,

we get that

Pr̄
e

[N t
2
(ē)] ≥ |F |

|E|
· 1
|Σ|2

.

Using the fact (not proved here, for a proof see Dinur [2007]) that there is ε > 0, such that
for any i ∈ I, Prē[Ni(ē)] ≥ ε · Prē[N t

2
(ē)] holds, and that |I| =

√
2t+O(1) we get

9–4

Ex̄
e

[N(ē)] =
∑
i∈I

Pr̄
e

[Ni(ē)] ≥ |I| · ε · Pr̄
e

[N t
2
(ē)] ≥ |I| · ε · |F |

|E|
· 1
|Σ|2

≥ Ω(
√
t) · |F |

|E|
.

In the next lecture we will complete the proof of validity of the reduction by providing a
proof for Claim 12.

9–5

Lecture 10

Parallel Repetition I — Definitions and motivation
March 24th, 2008

Lecturer: Eli Ben-Sasson Scribe: Kineret Ben-Eliyahu and Hanna Fadida

10.1 Validity of the reduction - continue

This lecture we will finish the proof of ?? from the previous lecture, by proving claim ??:

E
[
N2 (e)

]
≤ O

(√
t
) |F |
|E|

Proof. In the previous lecture we defined the interval I as I =
[
t/2−

√
t/2, t/2 +

√
t/2
]

and F = {(u, v) ∈ E|C(u,v)(Â(u), Â(v)) = reject}
Let’s define Z (e) for a path e = (v0, . . . , vt) to be the number of ’bad’ edges around the
middle of the path:

Z (e) = |{(vi, vi+1) ∈ F |i ∈ I}|

Let Zi be the indicator variable of the event "the edge (vi, vi+1) is in F"’.
Therefore,

Z (e) =
∑
i∈I

Zi (e)

.

E
[
Z2 (e)

]
= E

[(∑
Zi (e)

)2
]

= E

∑
i,j∈I

Zi (e)Zj (e)

 =
∑
i∈I

E [Zi] + 2
∑
i<j

E [ZiZj] =

(∗)
= |I| · |F |

|E|
+ 2

∑
i<j

[(
|F |
|E|

)2

+
|F |
|E|

·
(
λ

d

)j−i
]

The graph G is a regular graph and therefore, E [Zi] = |F |
|E| .

E [ZiZj] is the probablity that both edges are in F .

E [ZiZj] = Pr [Zi = 1]Pr [Zj = 1|Zi = 1]

.
If G is (d, λ)-expander graph, then random walk which starts in F does it’s i-th move in F
with probability ≤ |F |

|E| +
(

λ
d

)i and thus Pr [Zi = 1]Pr [Zj = 1|Zi = 1] ≤ |F |
|E| ·

(
|F |
|E| +

(
λ
d

)j−i
)
.

10–1

E
[
Z2 (e)

]
= E

[(∑
Zi (e)

)2
]

= E

∑
i,j∈I

Zi (e)Zj (e)

 =
∑
i∈I

E [Zi] + 2
∑
i<j

E [ZiZj] =

= |I| · |F |
|E|

+ 2
∑
i<j

[(
|F |
|E|

)2

+
|F |
|E|

·
(
λ

d

)j−i
]
≤ |I| · |F |

|E|
+
|F |
|E|

· |I|2 · |F |
|E|

+ 2
|F |
|E|

∑
i<j

(
λ

d

)j−i

Due to the definitions above |I| = O
(√
t
)

and |F |
|E| ≤

1√
t
. In addition we choose λ = d

2 ,

and therefore, |I| · |F ||E| + |F |
|E| · |I|

2 · |F ||E| + 2 |F ||E|

∑
i<j

(
λ

d

)j−i

≤ O
(√

t
)
· |F |
|E|

+
|F |
|E|

· O
(√

t
)

+

2
|F |
|E|

∑
i<j

2i−j ≤ O
(√

t
)
· |F |
|E|

By definition N (e) < Z (e), and therefore, E
[
N2 (e)

]
≤ O

(√
t
) |F |
|E| .

This claim was necessary for the soundness’ proof, and finishes phase II.

10.2 Parallel Repetition - Motivation

Recall that we want to show that for every ε > 0 there exist an alphbet Σ in a constant size
such that

NTIME (f(n)) ⊆ PCP

 q ≤ 2
Σ = Oε (1)
t(n), `(n) = f(n)Oε(1)

∣∣∣∣∣∣∣
c = 1
s ≥ 1− ε

.
We have already seen in the first lecture (Theorem 1.3) that for every proper complexity
function
f : N+ → N+ and all ε > 0,

NTIME (f(n)) ⊆ PCP

q ≤ 3
Σ = {0, 1}
nonadaptive

query − type XOR
t(n), `(n) ≤ poly(f(n))
r(n) ≤ log(`(n)) +O(1)

∣∣∣∣∣∣∣∣∣∣∣∣∣
c ≥ 1− ε

s ≥ 1
2 − ε

.

To prove this we will think of a proof as a game with two players.

10–2

10.3 Parallel Repetition - Definitions

Definition 10.1 (2-Prover 1-Round Game). A 2-prover 1-round game G consists of four
sets: X,Y,A,B, with probability measure µ on X × Y , and a decision predicate
V : X × Y ×A×B → acc/rej

A strategy is a pair of functions:

π0 : X ×R→ A

π1 : Y ×R→ B

And the value of the game, ω(G), is defined to be:

ω (G) = max
π0,π1

Pr
x,y∼µ

[V (x, y, π0(x, r), π1(y, r)) = acc]

Definition 10.2 (Soundness Error). The Soundness Error is defined to be es = 1− s.

One way to decrease the soundness error is Sequential repetition, which decreases the sound-
ness error exponentially, but requires multiple rounds. The solution is Parallel Repetition.

Definition 10.3. A n-repeated game, Gn, is the game overXn×Y n×An×Bn with a decision

predicate V n(x1, . . . , xn, y1, . . . , yn, a1, . . . , an, b1, . . . , bn) = acc⇔
n∧

i=1
V (xi, yi, ai, bi) = acc

What is ω(Gn)?

Theorem 10.4 (Fortnow-Sipser-Rompel ’88). ω(Gn) = (ω(G))n.

This "theorem" turn out to be wrong.
Counterexample: consider following game:

• V chooses x0, x1 ∈ {0, 1}, and sends xi to prover Pi

• Prover P0 responds with (a0, a1)

• Prover P1 responds with (b0, b1)

• V accepts iff (a0, a1) = (b0, b1) and a1 = xa0

i.e. the provers reply with "Prover Pa0 got a1". The value of the game is 1
2 , for the strategy

in which P0 replies (0, x0), and P1 replies (0, b1). With probability 1
2 , P1 "guess" right, and

so ω (G) = 1
2 .

10–3

What about ω
(
G2
)
?

Suppose provers choose the following strategy:

P0:
(
0, x(1)

0

)(
1, x(1)

0

)
.

P1:
(
0, x(2)

1

)(
1, x(2)

1

)
.

The provers win iff x
(1)
0 = x

(2)
1 , which happens with probability 1

2 . Hence, ω
(
G2
)
≥ 1

2 .
However,

Claim 5. ∀ω (Gn) = 2−n/2.

So, the value of the game goes down exponentially.

Theorem 10.6. (Parallel Reptition Theorem,Raz [1998][Raz ’95]) For any game G, there
exist a constant αG > 0 (that depends only on the alphabet size of the provers’ answers,
|A| , |B|, and on ω (G)), such that ω (Gn) ≤ (αG)n.

Next lecture we will prove the theorem above.

10–4

Lecture 11

Parallel Repetition II — Sketch of proof
March 31st, 2008

Lecturer: Eli Ben-Sasson Scribe: Kineret Ben-Eliyahu and Hanna Fadida

11.1 Proof of Parallel Repetition Theorem

In the previous lecture we introduced the Parallel Repetition Theorem by Raz (Theo-
rem 10.6). Today we are going to prove a new versia of this theorem that was introduced
by Holenstein:

Theorem 11.1. ([Holenstein ’07]) if ω (G) = 1−δ then ω (Gn) ≤ 2−cδ3n/2 (when c depends
on the alphabet, c ∼ 1

log(|A||B|)).

Note that improving of the paramaeters, e.g, ω (Gn) ≤ 2−δn, will lead to a proof for a very
well known assumption - "unique game conjuction".
Let Wi be the event of winning the i− th game, i.e, V (xi, yi, ai, bi) = acc.

Lemma 11.2. (Main Lemma)
For any alphabet A,B, there exists a constant c > 0, such that for any δ, and for all k ≤ cδ2n,
there exists j > k, such that if ω (G) = 1− δ then:

Pr [Wj |W1 · · ·Wk] ≤ 1− δ/2. (2)

The above lemma implies Theorem 11.1:

Pr

[
n∧

i=1

Wi

]
≤ Pr [W1] Pr [W2|W1] · · ·Pr [Wn|W1 · · ·Wn−1] ≤ (1− δ) (1− δ/2) · · · (1− δ/2)︸ ︷︷ ︸

cδ2n

·1 · · · 1

≤ (1− δ) (1− δ/2)cδ2n ≤ e−cδ3n/2

Proof. of Lemma 11.2. We assume in contradiction that there is a provers’ stategy violating
2 and will use it to succeed in the original game, with probability more than 1 − δ, in
contradiction to assumption that ω (G) = 1− δ.

We define W =
k∧

i=1
Wi.

11–1

If to any j > k

Pr

[
Wj |

k∧
i=1

Wi

]
> 1− δ/2

then:

Claim 3. There exists a winning transcript of the first k rounds, āb̄ ∈ Ak ×Bk, such that:

1. Pr
[
t = āb̄|W

]
≥ 1

100 (|A| |B|)−k

2. For at least 1
100 percents of the release j − ies (from k + 1, . . . , n)

Pr
[
Wj |W ∧ t = āb̄

]
≥ 1− 3/4δ

Proof. Let us define ej = Pr [Wj |W].
We say that a transcript t is bad if

∣∣{j|ej |t > 1− 3
4δ
}∣∣ < 1

100 (n− k).

Claim 4. Pr [t is bad |W] ≤ 99
100

Proof. We assume in contradiction that Pr [t is bad |W] > 99
100 , then, we look at

P
j>k

ej

n−k , in
one hand:

(n− k) (1− δ/2)
n− k

<

∑
j>k

ej

n− k

because the contradiction assumption of the previous claim 11.1.
For the other hand:

1
n− k

·
∑
j>k

ej ≥ Pr [t is bad]
[

99
100

(
1− 3

4
δ

)
+

1
100

· 1
]

+ (1− Pr [t is bad]) · 1

≥ 99
100

[
99
100

(
1− 3

4
δ

)
+

1
100

]
≤
(

99
100

− 99
100

· 3
4
δ

)
+

1
100

< 1− δ

2

Because of the calim above, and the fact that there is only |A|k × |B|k possible transcripts,
there must be a "good" transcript t that happens with probability greater than

1
|A|k×|B|k

· Pr [t is good |W] ≥ |A|k×|B|−k

100 , and the proof of claim Claim 3 is completed.

Now we take a transcript t = a, b like this, which happens with probability greater than
|A|k×|B|−k

100 . Moreover, the winning probability for many of the Wj − ies (j > k), while a, b
happens, is greater than 1− δ (in fact it’s greater than 1− 3

4δ).
We will look at the distribution on xk+1, . . . , xn, yk+1, . . . , yn conditions on W ∧ t :
X̃k+1, . . . , X̃n, Ỹk+1, . . . , Ỹn. This is the distribution of the last queries that is conditioned
in winning on the first k games, which happpens by answering t in the k queries.

11–2

Lemma 11.5. Let U = U1× . . .×Un be a product distribution, and let Ũ = Ũ1× . . .× Ũn be
the distribution of U conditioned on some event that happens with probability at least 2−d.
Then,

1
n

∑
j

∆
(
Uj , Ũ j

)
≤
√
d/n

11–3

Lecture 12

Towards 3-query PCPs with optimal soundness
April 7th, 2008

Lecturer: Eli Ben-Sasson Scribe: Nathaniel Cohen and Yonathan Touati

In this final lecture we shall sketch the proof of Theorem 1.3. For a detailed proof see, e.g.,
Khot [2004]. We start with a restatement of the theorem we wish to obtain.

Theorem 1.3 (restated). For every proper complexity function f : N+ → N+ and all
ε > 0,

NTIME (f(n)) ⊆ PCP

q ≤ 3
Σ = {0, 1}
nonadaptive

query − type XOR
t(n), `(n) ≤ poly(f(n))
r(n) ≤ log(`(n)) +O(1)

∣∣∣∣∣∣∣∣∣∣∣∣∣
c ≥ 1− ε

s ≥ 1
2 − ε

.

From previous lectures, we know something very close to Theorem 1.3; The basic PCP
construction from Corollary 8.4 plus the parallel repetition theorem gives that for all ε > 0
there exists a constant cε > 0 and an alphabet Σ of size cε such that

NTIME (f(n)) ⊆ PCP

 q = 2
Σ
t(n), `(n) = f(n)O(1)

∣∣∣∣∣∣∣
c = 1
s ≥ 1− ε

.
To obtain Theorem 1.3 we need to reduce the alphabet size to 2, increase the query com-
plexity to 3 and use only XOR-constraints in our verification process. We shall do this by
encoding symbols in the “large” alphabet Σ by a special error correcting code, called the
long code.
Inspecting the application of parallel repetition to our basic PCP from Corollary 8.4, recall
our verifier can be graphically described via the following figure.

12–1

This implies that the following gap-problem is NP-hard. Recall the definition of a constraint
graph (Definition 8.5).

Definition 12.1 (Gapε Label Cover). An instance of the language Label Cover (LC)
is a constraint graph G = {G,Σ, C} where

• G is bipartite. Let W,V denote the partition of its vertices.

• Σ is partitioned into ΣW and ΣV .

• For every constraint C(v,w) ∈ C, the set of assignments (σ, σ′) that satisfy C(v,w) is
a subset of ΣV × ΣW . In other words, C(v,w) can be considered a constraint from
ΣV × ΣW to {accept, reject}.

For ε > 0 let Gapε Label Cover is the promise problem over Label Cover instances
defined by

• YES = {G|s(G) = 0}.

• NO = {G|s(G) ≥ 1− ε}.

The way we shall encode symbols of ΣV ,ΣW can be pictorially described as follows.

We shall define a verifier that, given encodings for symbols of ΣV ,ΣW as above, will make
3 (bit) queries, take their XOR and based on this value output accept/reject.

12.1 The long code

Next, we define the code that is used in the 3-query PCP of Theorem 1.3. Recall the
Hadamard code (Definition 3.3).

Definition 12.2 (Long code). The long code of an N -symbol alphabet is defined by the
encoding LN : [N] → F2N

2 ,

L(i) = HadamardN (ei), for i ∈ [N],

12–2

where ei ∈ FN
2 is the vector that has a 1 in the i position and 0 everywhere else.

Notice the codewords of the long code are a subset of the N -dimensional Hadamard code,
i.e., LN ⊂ HadamardN . Furthermore, since k = logN is the number of bits required to
describe a message, the long code maps k-message bits to 2N = 22k codeword-bits, justifying
its name — the long code. Finally, the long code is not a linear code because the set of
codewords is not closed under addition. Indeed, L(i) + L(j) is not a codeword of LN .
It turns out that using the long code to encode symbols in ΣW ,ΣV one can obtain Theo-
rem 1.3. We do not have time to show details in this course and refer the reader to Khot
[2004] for details.

12–3

Homework Assignment 1
Published on 4.2.2008

Due by 11.2.2008

1. To answer this question, recall lecture 2. MAX3SAT is an optimization problem over
CNF formulas with exactly 3 literals in each clause. Given such a 3CNF instance φ,
let OPT (φ) be the maximal number of clauses that can be simultaneously satisfied by
an assignment to the variables.

• Find a trivial 7
8 -approximation algorithm for MAX3SAT.

• Prove: If for some ε > 0 there exists a polynomial time algorithm that is a
(7
8 + ε)-approximation for MAX3SAT, then P = NP.

2. Prove: If w : F k
2 → F2 satisfies wa +wb = wa+b for all a, b ∈ F k

2 , then w is a codeword
of the k-dimensional Hadamard code. Hint: Basic linear algebra.

3. In this question we shall prove that any linear function can be locally decoded from
the Hadamard code with two queries. Let E : F k

2 → F 2k

2 be the encoding function
of the Hadamard code. Prove: There exists a decoder, i.e., a randomized machine D
with oracle access to a word w ∈ F 2k

2 such that for any input a = (a1, . . . , ak) ∈ F k
2 ,

the decoder makes two queries to w and the following guarantee holds: If w is δ-close
to E(m) for some m ∈ F k

2 , then

Pr
R

[
Dw[a;R] =

k∑
i=1

aimi

]
≥ 1− 2δ,

where Dw[a;R] denotes the (one bit) output of D on oracle w, input a and random
coins R.

HW–1

Homework Assignment 2
Published on 12.2.2008

Due by 18.2.2008
This assignment ties a couple of loose ends in the proof of the exponential length PCP
Theorem. The first question completes the analysis of the Hadamard tester. The last three
questions provide a formal proof of the following statement, discussed in the past two lectures
and stated there as Theorem 3.1.

Theorem 1. There exists ε > 0 such that for any proper f : N+ → N+,

NTIME (f(n)) ⊆ PCP

q = O(1)
Σ = F2

nonadaptive

t(n) ≤ poly(f(n))
`(n) ≤ 2f2(n)

r(n) ≤ O(f2(n))

∣∣∣∣∣∣∣∣∣∣∣∣∣
c = 1
s ≥ ε

.

The notation for the list of restrictions is the same as in Theorem 1.3 and F2 denotes the
two-element field.

1. Carefully read and summarize the soundness analysis of the 3-query tester for the
Hadamard code, stated as Lemma 2.11 in Lecture 2 of Ben-Sasson [Fall 2005]. Pay
particular attention to the proof of Claim 14 (which we didn’t complete in class).

2. An instance of MATRIXSAT of size t is a collection of at most t constraints φ1, φ2, . . .

over a set of variables yij , i, j ∈ [t] = {1, . . . , t}. Each constraint φr involves at most
two variables and is an F2-linear constraint, i.e., φr is of the form yi,j + yk,l + b = 0
for some i, j, k, l ∈ [t], b ∈ F2 and addition is done modulo 2. An instance φ is said to
be satisfied by β ∈ Ft×t

2 if (i) β satisfies all constraints and (ii) β = α · αT for some
α ∈ Ft

2, or in other words, βij = βii · βjj for all i, j ∈ [t]. Let MATRIXSAT be the
language consisting of all satisfiable instances, i.e., instances that can be satisfied by
some β.

Prove: There exists a poly(f(n))-time reduction from any language L ∈ NTIME (f(n))
to MATRIXSAT, where an instance of L of size n is reduced to an instance of
MATRIXSAT of size f(n).

3. Prove: There exists a verifier V that on input φ, an instance of MATRIXSAT of size
t and access to an oracle π of length 2t2 has the following properties.

• Operation: V tosses O(t) coins, runs in time poly
(
t2
)
, makes 4 nonadaptive

queries to π and outputs either accept or reject.

• Completeness: If π is the Hadamard encoding of β ∈ Ft2
2 and β satisfies φ then

PrR[V π[φ;R] = accept] = 1.

HW–2

• Completeness: If π is the Hadamard encoding of β ∈ Ft2
2 and β does not satisfy

φ then PrR[V π[φ;R] = reject] ≥ 1/4.

4. Give a formal proof of Theorem 1. Use (i) the local tester for the Hadamard code
presented in Lecture 2, (ii) the local decoder for Hadamard codes from Homework as-
signment 1 and (iii) the answers to the previous questions.

HW–3

Homework Assignment 3
Published on 18.2.2008

Due by 25.2.2008
The goal of this homework is to get familiarized with (i) the notion of a PCPP and (ii) the
PCPP Composition Theorem, both discussed in Lecture 5.

1. Prove, using the exponential length PCP discussed in Lectures 3 – 4: There exists
ε > 0 such that

pair-SAT ∈ PCPP

q = O(1)
Σ = F2

`(n) = 2n2

r(n), t(n) = O(n2)

∣∣∣∣∣∣∣∣∣
c = 1
s(n, δ) ≥ ε · δ

2. Recall the Composition Theorem stated in class. We say the soundness function
s : N+ × [0, 1] → [0, 1] is convex if for every n the function s(n, ·) : [0, 1] → [0, 1]
is convex. Let d(n) denote the size of the decision circuit generated by the PCPP-
verifier on input of size n (all other parameters are as defined in Theorem 1.3). The
Composition Theorem says that for convex soundness function s,

If pair-SAT ∈ PCPP

q(n)
d(n)
r(n)
`(n)
t(n)

∣∣∣∣∣∣∣∣∣∣∣
c = 1
s(n, δ)

,

Then pair-SAT ∈ PCPP

q(d(n))
d(d(n))
r(n) + r(d(n))
`(n) + 2r(n) · `(d(n))
t(n) + t(d(n))

∣∣∣∣∣∣∣∣∣∣∣
c = 1
s(d(n), s(n, δ))

.
Use the composition theorem and the previous question to fill in the missing parame-
ters:

If pair-SAT ∈ PCPP

(
q(n), d(n), r(n) = O(log n)
`(n), t(n) = nO(1)

∣∣∣∣∣ c = 1
s(n, δ) ≥ (1− ε)δ

)
,

Then pair-SAT ∈ PCPP

q(n) = O(1)
d(n) = ?
r(n) = ?
`(n) = ?
t(n) = ?

∣∣∣∣∣∣∣∣∣∣∣
c = 1
s(n, δ) ≥ ?

.

HW–4

Homework Assignment 4
Published on 3.3.2008

Due by 10.3.2008
The purpose of this assignment is to complete the proof of the following theorem. To
complete this assignment you may use [Ben-Sasson, Fall 2005, Lecture 10].

Theorem 1.

NTIME (f(n)) ⊆ PCP

` ≤ f2(n) · polylog(f(n))
q = O(1)
t ≤ fO(1)(n)
Σ = F2

∣∣∣∣∣∣∣∣∣
c = 1
s(n) ≥ 1/polylog(f(n))

.
First we prove that the language ACSP, defined below, is NTIME (f(n))-complete. This
language is an analog of MATRIXSAT that was introduced in Homework assignment 2.
Then we use the PCPP for RS- and vanishing RS-codes to construct PCPPs for the language
ACSP, completing the proof of Theorem 1. Details follow.
An instance ψ of size t of the language DOMINO over alphabet Σ is a collection of con-
straints

ψ = {Cij : Σ3 → {accept, reject}}i,j∈[t].

An assignment A : [t2] → Σ is said to satisfy ψ if for all i, j ∈ [t− 1] we have

Cij(A(it+ j), A(it+ j + 1), A((i+ 1)t+ j)) = accept.

Our starting point is the following Theorem (for a proof, see Papadimitriou [1994]).

Theorem 2. There exists an alphabet Σ, |Σ| = d such that the language DOMINO over Σ,
which contains all satisfiable DOMINO instances, is complete for NTIME (f(n)) under
quadratic time reductions.

We reduce DOMINO to its algebraic version, defined next.

Definition 3 (Algebraic CSP (ACSP)). An instance of size t of ACSP is a tuple φ =
(F,H, L1, L2, L3, C

0, C1) where

• F is a finite field of characteristic 2 and 100dt2 < |F| ≤ 200dt2, where d is the constant
from Theorem 2.

• H ⊂ F, |H| = t2.

• L1, L2, L3 are linear functions from F to F, i.e. Li : F → F is given by Li(x) = aix+bi.

• C0 is a univariate polynomial of degree at most d.

• C1 is a polynomial in four variables, C1(x, y1, y2, y3) where degx(C1) ≤ |H| and
degyi

(C1) ≤ d.

HW–5

An assignment to φ is a univariate polynomial A,deg(A) ≤ |H|. We say that A satisfies φ
iff

• C0(A(h)) = 0 for all h ∈ H.

• C1(h,A(L1(h)), A(L2(h)), A(L3(h)) = 0 for all h ∈ H.

The language ACSP contains all satisfiable instances.

1. Prove: there is a polynomial time reduction from DOMINO to ACSP sending instance
ψ of DOMINO of size t to an instance φ of ACSP of size t. Hints:

• Let H = {ω1, ω2, . . . , ωt2} where ω generates the multiplicative group F∗.
• Map [t2] to H.

• Map Σ to an arbitrary subset of F.

• Map accept to 0 and reject to 1.

• Define C0 to be the polynomial that vanishes only on Σ (this polynomial will be
used to check that an assignment A evaluates to Σ on every point in H).

• Define a 3-variate polynomial Ĉij that agrees with the constraint Cij on Σ3 and
has degree at most d in each of its three variables. You may use the fact that for
any function g : Σ3 → F there exists a trivariate polynomial of degree at most
|Σ| in each variable that agrees with g on Σ3. (No need to prove this fact.) The
polynomial Ĉij is called the low degree extension of the function Cij .

• Use the polynomial δH
ij defined by

δH
ij (x) =

{
1 x = ωit+j

0 x ∈ H \ {ωit+j}

to “glue” the constraints Ĉij into one big constraint, namely, the polynomial C1.

2. Complete the proof of Theorem 1, by providing a PCP verifier for instances of ACSP.
Use the following PCPPs, discussed in class:

pair-binary-RS,
pair-binary-VRS

∈ PCPP

` ≤ n · polylog(n)
q = O(1)
t ≤ nO(1)

Σ = F

∣∣∣∣∣∣∣∣∣
c = 1
s(n, δ) ≥ δ/polylog(n)

.

1 Bibliographical notes

The long code was introduced in Bellare et al. [1998], where it was first analyzed in the
context of high-soundness PCPs. The proof of Theorem 1.3 which uses the parallel repetition
theorem and Fourier analysis of the long code appeared in Håstad [1997].

HW–6

Homework Assignment 5
Published on 10.3.2008

Due by 17.3.2008
The purpose of this homework is to fill in some of the details of the gap amplification proof
of the PCP Theorem and along the way familiarize ourselves with constraint and expander
graphs.

1. This question shows that we may move from constant query complexity to query
complexity 2 without a great loss in other parameters. Prove:

PCP

`(n)
r(n)
q(n)
|Σ| = a

nonadaptive
...

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
c = 1
s(n)

⊆ PCP

`(n) + 2r(n)

r(n) + dlog q(n)e
q = 2
|Σ| ≤ aq

...

∣∣∣∣∣∣∣∣∣∣∣∣
c = 1
s(n)/q

.

2. Let Gap-CGd(Σ, s(n)) be the promise problem Gap-CG(Σ, s(n)) restricted to in-
stances that are d-regular graphs. Prove: There exists integer d and constant c > 1
such that the following holds. There is a polynomial time, linear size, reduction from
Gap-CG(Σ, s(n)) to Gap-CGd(Σ, s(n)/c). Hints:

• Replace each vertex of degree m > d with (d− 1, (d− 1)/100) expander with m
vertices.

• Assume the existence and efficient construction of such expanders.

• Use the following property of a (d, λ)-expander G = (V,E), stated in class: For
every S ⊂ V, |S| ≤ |S|/2 we have

|E(S, S)| ≥ d− λ

2
· |S|,

where E(S, S) is the set of edges with one vertex in S and the other not in S.

HW–7

References

1. Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. Proof verification
and the hardness of approximation problems. J. ACM, 45(3):501–555, 1998. ISSN 0004-5411.

2. Sanjeev Arora and Shmuel Safra. Probabilistic Checking of Proofs: A New Characterization of NP.
J. ACM, 45(1):70–122, 1998.

3. László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. Checking computations in
polylogarithmic time. In STOC ’91: Proceedings of the twenty-third annual ACM symposium on
Theory of computing, pages 21–32, New York, NY, USA, 1991. ACM Press. ISBN 0-89791-397-3.

4. Mihir Bellare, Oded Goldreich, and Madhu Sudan. Free bits, PCPs, and nonapproximability —
towards tight results. SIAM Journal on Computing, 27(3):804–915, June 1998.

5. Eli Ben-Sasson. From error correcting codes to inapproximability probabilistically checkable
proofs. Course notes, Fall 2005. URL http://www.cs.technion.ac.il/~eli/courses/PCP_
Fall_2005/.

6. Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil Vadhan. Robust pcps
of proximity, shorter pcps and applications to coding. In Proceedings of the thirty-sixth annual
ACM Symposium on Theory of Computing (STOC-04), pages 1–10, New York, June 13–15 2004.
ACM Press.

7. Eli Ben-Sasson and Madhu Sudan. Short PCPs with poly-log rate and query complexity. In STOC,
pages 266–275, 2005.

8. Manuel Blum, Michael Luby, and Ronitt Rubinfeld. Self-testing/correcting with applications to
numerical problems. In STOC ’90: Proceedings of the twenty-second annual ACM symposium on
Theory of computing, pages 73–83, New York, NY, USA, 1990. ACM Press. ISBN 0-89791-361-2.

9. Dinur. The PCP theorem by gap amplification. volume 54, 2007.

10. Irit Dinur and Omer Reingold. Assignment testers: Towards a combinatorial proof of the PCP-
theorem. In FOCS, pages 155–164, 2004. URL http://csdl.computer.org/comp/proceedings/
focs/2004/2228/00/22280155abs.htm.

11. Funda Ergün, Sampath Kannan, S. Ravi Kumar, Ronitt Rubinfeld, and Mahesh Viswanathan.
Spot-checkers. J. Comput. Syst. Sci., 60(3):717–751, 2000.

12. Uriel Feige, Shafi Goldwasser, Laszlo Lovász, Shmuel Safra, and Mario Szegedy. Interactive proofs
and the hardness of approximating cliques. J. ACM, 43(2):268–292, 1996. ISSN 0004-5411.

13. Ofer Gabber and Zvi Galil. Explicit constructions of linear-sized superconcentrators. Journal of
Computer and System Sciences, 22(3):407–420, June 1981.

14. Johan Håstad. Some optimal inapproximability results. In STOC ’97: Proceedings of the twenty-
ninth annual ACM symposium on Theory of computing, pages 1–10, New York, NY, USA, 1997.
ACM Press. ISBN 0-89791-888-6.

15. Subhash Khot. Probabilistically checkable proofs and hardness of approximation - course notes,
2004. URL http://www-static.cc.gatech.edu/~khot/pcp-course.html.

http://www.cs.technion.ac.il/~eli/courses/PCP_Fall_2005/
http://www.cs.technion.ac.il/~eli/courses/PCP_Fall_2005/
http://csdl.computer.org/comp/proceedings/focs/2004/2228/00/22280155abs.htm
http://csdl.computer.org/comp/proceedings/focs/2004/2228/00/22280155abs.htm
http://www-static.cc.gatech.edu/~khot/pcp-course.html

16. J. Kilian. A note on efficient zero-knowledge proofs and arguments. In N. Alon, editor, Proceedings
of the 24th Annual ACM Symposium on the Theory of Computing, pages 723–732, Victoria, B.C.,
Canada, May 1992. ACM Press. ISBN 0-89791-512-7.

17. A. Lubotzky, R. Phillips, and P. Sarnak. Ramanujan graphs. Combinatorica, 8(3):261–277, 1988.
ISSN 0209-9683.

18. G. A. Margulis. Explicit constructions of expanders. Problemy Peredači Informacii, 9(4):71–80,
1973.

19. Silvio Micali. Computationally sound proofs. SIAM J. Comput., 30(4):1253–1298, 2000. URL
http://dx.doi.org/10.1137/S0097539795284959.

20. Ryan O’Donnell. A history of the PCP theorem. Course notes on the PCP Theorem and Hardness
of Approximation, Autumn 2005. URL http://www.cs.washington.edu/education/courses/
533/05au/pcp-history.pdf.

21. Christos H. Papadimitriou. Computational complexity. Addison-Wesley Publishing Company, Read-
ing, MA, 1994.

22. Radhakrishnan and Sudan. On dinur’s proof of the PCP theorem. BAMS: Bulletin of the American
Mathematical Society, 44, 2007.

23. Ran Raz. A parallel repetition theorem. SIAM Journal on Computing, 27(3):763–803, June 1998.

24. O. Reingold, S. Vadhan, and A. Wigderson. Entropy waves, the zig-zag graph product, and new
constant-degree expanders and extractors. In FOCS ’00: Proceedings of the 41st Annual Sympo-
sium on Foundations of Computer Science, page 3, Washington, DC, USA, 2000. IEEE Computer
Society. ISBN 0-7695-0850-2.

25. Mario Szegedy. Many-valued logics and holographic proofs. In Jiří Wiedermann, Peter van Emde
Boas, and Mogens Nielsen, editors, Proceedings of the 26th International Colloquium on Au-
tomata, Languages and Programming, ICALP’99 (Prague, Czech Republic, July 11-15, 1999), vol-
ume 1644 of LNCS, pages 676–686. Springer-Verlag, Berlin-Heidelberg-New York-Barcelona-Hong
Kong-London-Milan-Paris-Singapore-Tokyo, 1999. URL http://springerlink.metapress.com/
openurl.asp?genre=article&issn=0302-9743&volume=1644&spage=676.

http://dx.doi.org/10.1137/S0097539795284959
http://www.cs.washington.edu/education/courses/533/05au/pcp-history.pdf
http://www.cs.washington.edu/education/courses/533/05au/pcp-history.pdf
http://springerlink.metapress.com/openurl.asp?genre=article&issn=0302-9743&volume=1644&spage=676
http://springerlink.metapress.com/openurl.asp?genre=article&issn=0302-9743&volume=1644&spage=676

	Title Page
	Lecture 1: Statement of the PCP Theorem
	1.1 Trading certainty for computational efficiency
	1.2 Complexity Classes defined by PCP verifiers
	1.3 Two variants of the PCP Theorem
	1.4 Bibliographical notes

	Lecture 2: Implications of the PCP Theorem
	2.1 Reminder of last lecture's definitions
	2.2 Hardness of approximation
	2.3 A positive result
	2.4 Bibliographical notes

	Lecture 3: Exponential Length PCPs part I --- The Hadamard code is Locally Testable
	3.1 Encoding proofs via the Hadamard code
	3.2 The Hadamard codes are locally testable
	3.3 Bibliographical notes

	Lecture 4: Exponential Length PCPs part II --- Arithmetization
	4.1 Arithmetization
	4.2 Verification
	4.3 Bibliographical notes

	Lecture 5: Composition of PCPs of Proximity (PCPP)
	5.1 PCPs of Proximity (PCPP)
	5.2 Proof Composition
	5.3 Bibliographical notes

	Lecture 6: Short PCPs based on PCPPs for Reed-Solomon codes
	6.1 Proof of the Composition Theorem
	6.2 PCPPs for Reed-Solomon Codes
	6.3 PCPPs for Vanishing Reed-Solomon codes
	4 Bibliographical Notes

	Lecture 7: Short PCPs based on PCPPs for Reed-Solomon codes --- Vanishing RS-codes and Arithmetization
	7.1 Pair-Binary-VRS
	7.2 Algebraic Constraint SAT problem (ACSP)
	3 Bibliographical Notes

	Lecture 8: PCP Proofs Using Gap Amplification
	8.1 Introduction
	8.2 Gap Amplification
	8.3 Proving The Gap Amplification Theorem
	8.4 First step --- Reduction to expander constraint graphs
	8.5 Bibliographical Notes

	Lecture 9: Gap Amplification II --- Soundness amplification
	9.1 The reduction
	9.2 Validity of the reduction

	Lecture 10: Parallel Repetition I --- Definitions and motivation
	10.1 Validity of the reduction - continue
	10.2 Parallel Repetition - Motivation
	10.3 Parallel Repetition - Definitions

	Lecture 11: Parallel Repetition II --- Sketch of proof
	11.1 Proof of Parallel Repetition Theorem

	Lecture 12: Towards 3-query PCPs with optimal soundness
	12.1 The long code

	Homework assignments
	Assignment 1
	Assignment 2
	Assignment 3
	Assignment 4
	1 Bibliographical notes

	Assignment 5
	References

