Constant rate PCPs with sublinear query complexity

Eli Ben-Sasson (Technion) Yohay Kaplan (Technion)
Swastik Kopparty (Rutgers) Or Meir (IAS)
Appendix by Henning Stichtenoth (Sabanci U.)

October 2013
Theorem (PCP [AS, ALMSS])

Every NP-claim has a short proof, can be verified by querying a few bits.

Two main applications, both benefit from shorter proofs:
- Hardness of approximation of CSP [FGLSS96]
 - Focus: query complexity vs. soundness
 - Shorter proofs imply inapprox. for larger class of algorithms
 - Query complexity is arity of CSP constraints
- Succinct verification of computational integrity [BFLS91]
 - Focus: efficiency of prover and verifier
 - Proof length is a lower bound on prover running time
 - Query complexity is lower bound on verifier running time
Introduction

Theorem (PCP [AS98,ALMSS98])

Every NP-claim has a short proof, can be verified by querying a few bits.

- [AS98,ALMSS98]: Short is $\ell = \text{poly}(n)$ (for claim of size n), few is $q = O(1)$.
- State of the art [BS05,D06]: $\ell = n \cdot \log^{O(1)} n$, $q = O(1)$
- No prior PCP with $\ell = O(n)$, $q = o(n)$ for any NP-complete L.

Theorem (Main: Constant rate PCPs with sublinear q. complexity)

For every $\epsilon > 0$ there exist (non-uniform) PCPs for CircutSAT_n (instances are circuits with n gates), with $\ell = 2^{c/\epsilon} \cdot n = O_\epsilon(n)$ and $q = n^\epsilon$
Two Corollaries and one Conjecture

Theorem (Main: Constant rate PCPs with sublinear q. complexity)

(Non-uniform) PCPs for CircuitSAT\(_n\) with \(\ell = O_\varepsilon(n)\) and \(q = n^\varepsilon\)

Corollary (log-rate PCPs for NP with subconst. q. complexity)

For any NDTM \(M\) running in time \(n^c\), the language \(L_M\) decided by \(M\) has non-uniform PCPs with \(\ell = O(n^c \log n)\) and \(q = n^\varepsilon\).

Corollary (Hardness of approximation)

If CircuitSAT\(_n\) does not have \(2^{o(n)}\)-size circuits, then \(\max - n^\varepsilon - CSP_n\) has no \(0.1\)-approx. alg. running in time \(2^{o(n)}\).

Conjecture (Succinct computational integrity)

Every \(L \in \text{NTIME}(T(n))\) has PCP with prover time \(O(T(n) \log T(n))\), verifier time \(T(n)^\varepsilon\).
Rest of talk — Main ideas in the proof

- PCP constructions have many moving parts,
- Won't present proof, rather examine 3 new parts in it,
 - Transitive Algebraic Geometry (AG) codes
 - Automorphism-based Schreier graphs
 - AG-generalization of Alon’s Combinatorial Nullstellensatz
- Compare new parts to “old” and “simple” PCP construction, based on bivariate low-degree polynomials
- For simplicity aim for query complexity \sqrt{n} (i.e., $\epsilon = 1/2$)
Bivariate Reed-Muller (RM) PCP with \sqrt{n} queries

- NP-claim given by circuit ϕ with n NAND gates, fan-in 2
- RM-PCP proof contains a low-degree extension of A:
 - gates $\rightarrow \{0, 1\}$

 1. Let F be of size $10\sqrt{n}$ and $H \subset F$, $|H| = \sqrt{n}$
 2. Identify gates with $H \times H$, now assignment is $A : H \times H \rightarrow \{0, 1\}$
 3. Prover writes $f : F \times F \rightarrow F$, supposedly the interpolation of A.

- Problem: Bitlength of f is $\geq n \cdot \log |F| = \Omega(n \cdot \log n)$.

- Attempted solution:
 - Pack $\log |F|$ bits of A in each symbol, like done for constant-rate LDCs [KSY11] and LTCs [V12]
 - Fails because need to unpack bits to check different constraints.

- New: Use tensor AG codes! Behave like polynomials (degree, distance, etc.) but with constant alphabet size. (Disclaimer: Restrictions apply, consult algebraist geometer before use.)
Algebraic Constraint Satisfaction Problems (ACSP)

- NP-claim given by circuit ϕ with n NAND gates, fan-in 2
- RM-PCP proof contains a low-degree extension of $A : H \times H \rightarrow \{0, 1\}$
- Check each gate (x, y) for consistency with its inputs
 - Let $N_1(x, y)$ be first input-gate to (x, y), $N_2(x, y)$ second input-gate.
 - NAND constraint: $A(X, Y) - (1 - A(N_1(X, Y)) \cdot A(N_2(X, Y))) = 0$
- Problem: $\deg_X(A) = \sqrt{n}$ and $\deg_X(N_i) = \sqrt{n}$ (same with Y-degree)
 - Hence $\deg_X(A(N_1)) = n$, same with Y-degree
 - Hence $|F|$ must be greater than n
 - So proof has size $\geq n^2$
- Solution: Construct circuit where $\deg(N_i) = 1$ by embedding ϕ in affine graph
Affine graphs for RM-PCP

- [BS05], following [PS94]: Reduce \(\phi \) to circuit \(\phi' \) in which \(\deg(N_i) = 1 \)
 1. Embed \(\phi \) in a universal circuit \(U \), using vertex disjoint paths
 2. Embed \(U \) in an affine graph \(G \), hence \(N_i \) is an affine function.
 - Affine graph: Schreier graph with \(V = \mathbb{F}^2 \) and edge-generating set a subgroup of the affine group.

- Problem: Resulting \(\phi' \) is of size \(n \log n \).
- New: Use hypercube instead
 - Vertices are \(\mathbb{F} \times \mathbb{F} \)
 - Edges: \((x, y)\) adjacent to \(\{(x + x', y), (x, y + y') | x', y' \in H\} \)
 - Affine graph generated by \(O(\sqrt{n}) \) affine functions, and vertex set size \(O(n) \)

- This works fine for RM, what about AG?
Schreier graphs for AG-PCP

- Question: Why use affine graphs with RM-PCP?
- Answer: Because RM-codes invariant under affine transformation, so
 \[\deg_X(A(N)) = \deg_X(A) \]
- In other words: Affine graph is a Schreier graph that uses, as generating set, only automorphisms of the RM code!
- **New:** In AG-PCP, use Schreier graph with generating set that is contained in the automorphisms of the AG-code
- In particular, to embed hypercube need a *transitive* AG-code
- Many results on \(\text{Aut}(C) \) and “local” code properties [YR03, AKKLR05, KS08, KW06, BS11, BGMSS12, BGKSS13, …].
- **New:** AG codes with a sufficiently rich automorphism group leads to better PCPs!
Asymptotically good transitive AG codes

- Need codes satisfying
 - constant rate, relative distance, and alphabet size
 (needed to achieve constant rate PCP)
 - polynomial-like “multiplication property” [M10]
 (needed to facilitate arithmetization)
 - Invariant under action of a transitive group
 (needed to allow reduction of \(\phi \) to hypercube)
- Do they exist?

Theorem (Stichtenoth, 2006)

For infinitely many \(k_1 < k_2 < \ldots \), exists transitive AG code of dimension \(\dim(C_i) = k_i \) and constant rate, relative distance, and alphabet-size.

Problem: family is sparse, i.e., \(k_i / k_{i-1} \to \infty \)

Theorem (Stichtenoth, New dense family of transitive AG codes)

For inf. many \(k_1 < k_2 < \ldots \), \(k_i / k_{i-1} = O(1) \), exists transitive AG code of dimension \(k_i \), constant rate, relative distance, and alphabet-size.
Zero testing and Sum-check

Zero testing problem: Verify that $P(X, Y)$ vanishes on $H \times H$. We provide two different solutions

- “Combinatorial” \cite{M10}: All tensor codes have a sum-check protocol
- “Algebraic”: Generalize Alon’s combinatorial nullstellensatz to AG
AG combinatorial nullstellensatz

Verify that $P(X, Y)$ vanishes on $H \times H$.

- Univariate (simpler) case: Given $f \in C$, verify $f(x) = 0$ for all $x \in H$.
- Reed-Solomon: $P(X)|_H = 0$ iff $\exists \hat{P}(X), P(X) = \hat{P}(X) \cdot \text{Zero}_H(X)$, where $\text{Zero}_H(X) = \prod_{\alpha \in H}(X - \alpha)$
- [BS05] used this in RS-PCP, generalization to RM-PCP is

Theorem (Combinatorial Nullstellensatz [Alon99])

Low-degree $P(X, Y)$ vanishes on $H \times H$ iff there exist low-degree B, C s.t.

$$P(X, Y) = B(X, Y) \cdot \text{Zero}_H(X) + C(X, Y) \cdot \text{Zero}_H(Y)$$

- What if C is AG-code? Is there a function vanishing precisely on H?

Theorem (New AG Combinatorial Nullstellensatz)

For $H \subset D$ there exist Z_H, Z'_H such that “low-degree” $f : D \times D \to \mathbb{F}$ vanishes on $H \times H$ iff exist “low-degree” $g, h : D \times D \to \mathbb{F}$ s.t.

$$f(X, Y) \cdot Z'_H(X, Y) = g(X, Y) \cdot Z_H(X) + h(X, Y) \cdot Z_H(Y)$$
Concluding remarks

Theorem (Main: Constant rate PCPs with sublinear q. complexity)

For every $\epsilon > 0$ there exist (non-uniform) PCPs for CircuitSAT_n (instances are circuits with n gates), with $\ell = 2^{c/\epsilon} \cdot n = O_\epsilon(n)$ and $q = n^\epsilon$

- Construction uses tensors of transitive AG codes
- Such codes are useful because
 - are asymptotically good
 - transitivity facilitates efficient ACSPs via universal Schreier graphs
 - have a combinatorial nullstellensatz theorem

Questions

1. Remove non-uniformity assumptions, requires (only) explicit polynomial time construction of transitive AG codes
2. Are there PCPs with constant rate and $q = O(1)$?, perhaps $q = \log n$?