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Lecture 1

Introduction

October 15 2013

Lecturer: Eli Ben-Sasson Scribe: Eli Ben-Sasson

This lecture is devoted to explaining the two versions of the PCP theorem that we will study

in this course. We start next with informal description and motivation, followed by formal

de�nitions of the theorems that address these goals.

1.1 Succinct Computational Integrity and Hardness of Ap-

proximation

The introduction of interactive proofs Babai and Moran [1988]; Goldwasser et al. [1989] led

quickly to many results that studied various forms of proof systems. This course focuses

on Probabilistically Checkable Proofs (PCPs), also known as holographic, or transparent,

proofs. These are proof systems in which a prover writes a proof for a given statement

and the veri�er then �tests�, or �veri�es� the correctness of the proof via an e�cient and

randomized procedure that, in particular, reads only a negligible part of the proof and yet

is �valid�, meaning that correct proofs of true statements are accepted with high probability

and any �proof� of a false statement is rejected with high probability. Early on, two distinct

possible use cases were o�ered for such proofs:

Succinct Computational Integrity Babai et al. [1991] pointed out that such proof

systems can o�er a succinct solution to the computational integrity problem. We start

with a Veri�er V holding the description of a nondeterministic machine M . She wishes to

have an untrusted prover P simulate the execution of M for T steps and report to her the

outcome of this computation. The problem of computational integrity is that if P cannot

be trusted, how can V trust his output? A trivial solution is for V to ask P to describe his

nondeterministic choices and then simulate M 's execution. Babai et al. [1991] showed that,

using PCPs (which they called holographic proofs there), V can obtain reasonable con�dence

in the integrity of P 's computation by running a (randomized) veri�cation protocol that costs

only poly(|M |, log T ) steps, given random access to bits of the proof. Even better, P can

generate the relevant proof in time T · poly(|M |, T ).

Hardness of Approximation Many NP-complete problems start with a set of constraints

over n variables and ask whether there exists an assignment that satis�es all of the con-

straints. Examples of such problems are graph-coloring, 3SAT and SetCover. In lieu of

polynomial-time algorithms for solving these problems, a natural question to ask is whether

there exist polynomial-time algorithms that are guaranteed to �nd an assignment that sat-
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is�es a non-negligible fraction of the constraints, where this fraction is measured relative to

the (possibly not e�ciently attainable) optimal assignment, one that maximizes the fraction

of satis�ed constraints. Feige et al. [1996] showed that the PCP Theorem implies that for

certain optimization problems, no nontrivial solutions exists unless P = NP.

1.2 Complexity Classes de�ned by PCP veri�ers

At the core of a PCP system lies a veri�er � the randomized machine that checks the

perceived correctness of proofs. Our intuitive de�nition of a �proof� is of a sequence of `

symbols from some �nite alphabet Σ. However, since we will severely limit the number

of symbols read from a proof, we prefer to view it as an oracle, i.e., as a function π :

{1, . . . , `} → Σ. This way, a machine with oracle access to π can specify an index i of

some entry of the proof and obtain its value within O(1) steps, without needing to move its

reading head to position i on the tape.

De�nition 1.1 (PCP-Veri�er). A PCP-veri�er, or simply, veri�er, is a randomized Turing

machine V with access to proof oracle, or, simply proof π. On input x and random coin

tosses R ∈ {0, 1}∗, V makes a number of queries to π and outputs either accept or reject.

We denote by V π[x;R] the output of V on input x, proof π and random coins R. If the

queries and decision predicate do not depend on answers to previous queries we say V is

nonadaptive. (Most veri�ers we shall encounter here are nonadaptive.)

Being interested in e�cient veri�ers, we are going to limit some of their computational re-

sources such as the running time, and the length and number of bits read from the proof.

Additionally, we will require that the veri�er make a correct decision with su�cient proba-

bility. Good proofs of correct statements must be accepted with a minimal probability called

the completeness parameter. Purported proofs of incorrect statements must be rejected with

a minimal probability known as the soundness parameter. The probability of error in both

the completeness and soundness cases depend on the random coin tosses of the veri�er. The

restrictions and the completeness and soundness parameters may depend on the length of the

input statement. Once completeness and soundness, and the limitations on computational

resources, are �xed, we have e�ectively de�ned a complexity class. A language belongs to it

if there exists a veri�er that operates under the computational restrictions and nevertheless

succeeds in judging correctly the validity of proofs with su�ciently high probability.

De�nition 1.2 (PCP-de�ned class of languages). Given a list of computational restrictions,

a completeness function c : N+ → [0, 1] and a soundness function s : N+ → [0, 1], the

complexity class PCP

(
list of restrictions

∣∣∣∣∣ c(n)

s(n)

)
is the set of languages L ⊆ Σ∗ for

which there exists a veri�er VL satisfying for every integer n and x ∈ Σn:

• Operation: VL on input x does not violate the listed restrictions.
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• Completeness: If x ∈ L there exists a proof π such that

Pr
R

[V π
L [x;R] = accept] ≥ c(n).

• Soundness: If x 6∈ L then for every proof π,

Pr
R

[V π
L [x;R] = reject] ≥ s(n).

1.3 Two variants of the PCP Theorem

The following variant of the PCP Theorem gives nearly optimal proof length and prover and

veri�er running time. Thus, it is more tailored for positive applications to e�cient generation

and checking of proofs and computations and to succinct computational integrity.

Theorem 1.3 (PCP Theorem � short proofs). There exists an absolute constant ε > 0

such that for every proper complexity function T : N+ → N+,

NTIME (T (n)) ⊆ PCP



`(n) ≤ T (n) · polylog(T (n))

t(n) ≤ polylog(T (n))

r(n) = log(`(n)) +O(1)

q ≤ 2

Σ = {0, 1, 2}
nonadaptive

∣∣∣∣∣∣∣∣∣∣∣∣∣
c = 1

s ≥ ε


.

Where

• `(n) is the length of the proof, or, formally, the largest index of a proof-symbol that

may be queried by V when given input of length n.

• t(n) denotes the running time of V as a function of the input length.

• r(n) is the number of random bits required by V on input of length n.

• q denotes the number of queries V makes to the proof oracle.

• Σ denotes the alphabet of the proof. Each query is answered with a single element from

this alphabet.

• nonadaptive means that the set of queries made to the proof and the decision process

based on the answers given by the oracle depend only on x and the random coins R,

and not on answers given by the oracle to previous queries.

Furthermore, for any L ∈ NTIME (T (n)), there exists a deterministic Prover machine PL
running in time T (n)polylog(T (n)) that on input x ∈ L and nondeterministic witness w for

x, produces a proof π = πx,w that is accepted by VL with probability 1.
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Next we give the version suited for applications regarding hardness of approximation.

Theorem 1.4 (PCP Theorem � query e�cient and sound). For every proper complexity

function T : N+ → N+ and any ε > 0,

NTIME (T (n)) ⊆ PCP



q ≤ 3

Σ = {0, 1}
nonadaptive

query − type XOR

t(n) ≤ poly(T (n))

`(n) ≤ T (n)1+o(1)

r(n) ≤ log(`(n)) +O(1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
c ≥ 1− ε
s ≥ 1

2 − ε


.

The notation for the list of restrictions is the same as in Theorem 1.3, and query − type

denotes the class of computations performed by the veri�er after receiving the query answers.

In the case of XOR, the computation depends only on the XOR of the (three) answer bits.

A few remarks about the previous theorem are due. Notice that improving the completeness

or soundness seems unlikely (assuming P 6= NP). If c = 1 and all other parameters are left

unchanged then P = NP because deciding whether a sequence of bits satis�es a collection of

XOR constraints is equivalent to solving a system of linear equations over the two-element

�eld and can be done (say, by Gaussian elimination) in polynomial time. Similarly, if s

must be less than 1/2 because a random proof (where each bit is selected by a random

coin toss) will be accepted by V with probability 1/2. The optimality of the soundness and

completeness in conjunction with the small query complexity and simplicity of the query

type have far reaching implications to our understanding the limitations of approximation

algorithms and this will be discussed later.

1.4 Bibliographical notes

The story of the PCP Theorem and the way its proof evolved is quite interesting. An

illustrated and entertaining description of this history can be found in O'Donnell [Autumn

2005]. Each of the two variants of the PCP Theorem stated in this lecture rely on several

important works. The basic statement of a constant-query PCP characterization of NP

appeared in Arora et al. [1998] and relies on Arora and Safra [1998]. The application of

the PCP Theorem to e�cient program checking (to be discussed in the following lecture)

appeared �rst in Babai et al. [1991] and the implication of the PCP theorem to hardness

of approximation was �rst observed in Feige et al. [1996]. The length-e�cient PCP variant

presented in Theorem 1.3 together with its e�cient prover is a combination of Ben-Sasson

and Sudan [2005]; Dinur [2007]; Ben-Sasson et al. [2005a]; Mie [2009]; Ben-Sasson et al.

[2013b,a]. The query e�cient PCP variant presented in Theorem 1.4 appeared is from

Håstad [1997]; Raz [1998]; Bellare et al. [1998]; Moshkovitz and Raz [2010].
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Lecture 2

Local codes

October 22 2013

Lecturer: Eli Ben-Sasson Scribe: Eli Ben-Sasson

The way a veri�er checks in time t the integrity of a computation run by the prover for T � t

steps, goes by asking the prover to (i) encode all relevant information about the computation

via a special error correcting code, and (ii) reducing the problem of computational integrity

to the simpler problem of codeword integrity. We start by describing the kind of codes that

are amenable to �local� or �succinct� integrity testing, as needed for part (i), and later will

deal with the reduction described in (ii).

2.1 Error correcting codes

We start with the de�nition of an error correcting code, as introduced in the 1940's in the

pioneering work of Golay, Hamming and Shannon (cf. MacWilliams and Sloane [1977]).

Since we plan to �test� codewords at random locations we prefer to think of a codeword as

a function from indices to symbols.

De�nition 2.1 (Error-Correcting Code). Let D,Σ be �nite sets and C = {f : D → Σ} a
set of functions from the domain D to the alphabet Σ. We say C is an (n, k, d)Σ-error

correcting code when

• The blocklength of C is n = |D|.

• The size of C is |Σ|k. We call k the information length and k/n is the rate of C.

• Every f, g ∈ C, f 6= g, have (Hamming) distance at least d, where the (Hamming)

distance of f and g is

Hamm(f, g) = |{x ∈ D|f(x) 6= g(x)}|

and the relative (Hamming) distance is rHamm(f, g) = Hamm(f, g)/n.

When Σ is a �nite �eld F and C is a linear space over F we call it an [n, k, d]F-linear

error correcting code (notice the slightly di�erent bracket notation). Recall that C is linear

over F if for every f, g ∈ C and α, β ∈ F the function αf + βg belongs to C, where

(αf + βg)(x) = αf(x) + βg(x).

2.2 Testers for codeword integrity

We reduce the problem of computational integrity to that of codeword integrity via use of a

codeword integrity tester, or, simply, tester. We limit our discussion to nonadaptive testers,
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meaning their queries and decision predicate do not depend on answers given to previous

queries. All testers we will encounter here are nonadaptive and henceforth we will drop

further mention of this property.

De�nition 2.2 (Tester). Let C = {f : D → Σ} be a code with blocklength n = |D| over
alphabet Σ. A (nonadaptive) (t, r, q)-restricted tester for C is a randomized algorithm T

that receives a randomness input R ∈ {0, 1}r and, after t steps, outputs a sequence of q

queries x1, . . . , xq ∈ D along with a decision predicate which is a mapping Dec : Dq ×Σq →
{accept, reject}.
We say T has completeness c ∈ [0, 1] and soundness function s : [0, 1] → [0, 1] for C if the

following conditions hold:

• Completeness: f ∈ C implies

Pr
R∈{0,1}r

[Dec (x1, . . . , xq, f(x1), . . . , f(xq)) = accept] ≥ c.

Notice that x1, . . . , xq and Dec may depend on R.

• Soundness: f 6∈ C implies

Pr
R∈{0,1}r

[Dec (x1, . . . , xq, f(x1), . . . , f(xq)) = reject] ≥ s(rHamm(f, C)),

where rHamm(f, C) = min{rHamm(f, g)|g ∈ C} is the minimal relative distance of f

from all codewords of C.

Finally, we say that C is a (q, ε, δ)-locally testable code (LTC) if it has a q-query tester with

completeness c = 1 and soundness function satisfying s(δ′) ≥ ε for all δ′ > δ.

Remark (Linear codes require only linear testers). For a linear code C over a �eld F, let C⊥

be the space dual to C,

C⊥ = {g : D → F|
∑
x∈D

f(x) · g(x) = 0 for all f ∈ C}

where arithmetic operations are over F. A linear tester for C is de�ned by a distribution µ

over C⊥. To use such a tester, sample g from C⊥ according to µ and accept f i�
∑

x∈D f(x)·
g(x) = 0. By de�nition of C⊥ this test has completeness 1, and, for instance, if µ is the

uniform distribution over C⊥ then f 6∈ C is rejected with probability 1 − 1/|F| (This is

because the subset of C⊥ that is orthogonal to f is a subspace of C⊥ of co-dimension 1.)

Ben-Sasson et al. [2005b] showed that if C has a tester with query complexity q, completeness

c, and soundness s, then it has a linear tester with query complexity q, perfect completeness

1, and soundness s+ (1− c).

Problem 2.1. Let C be a linear code that is a (q, ε, δ)-LTC for some ε > 0 and δ =

rHamm(C)/3, where rHamm(C) is the minimal relative distance of C. Prove: The minimal

distance of C⊥ is at most q.
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2.3 The BLR Theorem: Linearity functions are locally testable

Our �rst example of an LTC is due to Blum et al. [1990] and says that if C = {φ : G→ H}
is the code whose codewords are homomorphisms from a group G to a group H, then C is

a (3, ε, δ)-LTC for �xed positive ε, δ that are independent of G and H. For concreteness we

deal only with the case of G = (Fk2,+) and H = (F2,+) where F2 is the two-element �eld,

the relevant code is called the Hadamard code of dimension k, denoted here by Hadk. The

proof generalizes to any G and H.

We use the notation 〈f, g〉D for
∑

x∈D f(x)g(x), when D is clear from context we simply

write 〈f, g〉. We also use [k] for {1, . . . , k}.

Problem 2.2. Prove: A function f : Fk2 → F2 is a homomorphism i� there exists a ∈ Fk2
such that f(x) = 〈a, x〉[k] =

∑k
i=1 aixi for all x ∈ Fk2.

Problem 2.3. Prove: the minimal distance of the k-dimensional Hadamard code is 2k−1.

(Extra: What is the minimal distance of C = {φ : G→ H}, as a function of |G|, |H|?)

The following tester for the Hadamard code was suggested by Blum et al. [1990].

De�nition 2.3 (BLR-Tester). Let T be the tester which, on input (x, y) ∈ F2k
2 outputs the

queries (x, y, x+ y) and accepts the answers f(x), f(y), f(x+ y) i� f(x) + f(y) = f(x+ y).

Problem 2.4. Formulate and prove: The BLR-tester has (perfect) completeness 1.

Next we prove the (harder) bound on the soundness function.

Theorem 2.4. If

Pr
x,y∈Fk

2

[f(x) + f(y) 6= f(x+ y)] = ε < 2/9, (1)

Then rHamm(f,Hadk) ≤ 2ε.

Problem 2.5. Use the previous theorem to bound from below the soundness function of

the BLR-Tester T .

2.4 Proving the BLR Theorem

For the rest of this session we assume Equation 1 and present a word majf that is (i) 2ε-close

to f and (ii) belongs to Hadk. The �rst part is relatively easy to prove and the second part

is somewhat harder.

De�nition 2.5 (Majority decoding). Given f : Fk2 → F2 let majf : Fk2 → F2 be de�ned by

setting the xth entry of majf to be the most common value of f(x+ y) + f(y). Formally,

majf (x) = majority{f(x+ y) + f(y)|y ∈ F k2 }.

Problem 2.6. Prove part (i) above: rHamm(w,w′) ≤ 2 · Prx,y[f(x) + f(y) 6= f(x+ y)].
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For the rest of this session we'll focus on part (ii) and prove majf ∈ Hadk. Our �rst step is

to show that every entry majf (x) is selected by an overwhelming majority.

Problem 2.7. Prove: For all x ∈ F k2 ,

Pr
y

[
f(x+ y) + f(y) = majf (x)

]
> 2/3.

Hints:

• Consider y, z ∈ F k2 selected randomly and independently.

• Show Pry,z [f(x+ y) + f(z) = f(x+ z) + f(y)] = Pry,z [f(x+ y) + f(y) = f(x+ z) + f(z)] >

5/9.

• Notice Pry,z [f(x+ y) + f(y) = f(x+ z) + f(z)] is the probability that two indepen-

dent random �votes� for majf (x) agree. The probability that two independent iden-

tically distributed random variables agree on their value is the collision probability of

the distribution and is useful for various probabilistic arguments, as we'll see next.

• Prove: If a {0, 1}-valued random variable Y satisfying (w.l.o.g.) Pr [Y = 1] ≥ 1/2 has

collision probability greater than 5/9, then Pr [Y = 1] > 2/3.

Problem 2.8. Using the previous problem prove that for any x, y ∈ F k2 we have majf (x) +

majf (y) = majf (x+ y). Conclude majf ∈ Had.
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Lecture 3

Hadamard code based PCP of exponential length

October 28 2013

Lecturer: Eli Ben-Sasson Scribe: Eli Ben-Sasson

We now proceed to use the local testability of the Hadamard code to prove the following

version of the PCP Theorem, one that has constant query complexity and soundness, but

very long proofs.

Theorem 3.1. There exists a constant ρ > 0 such that for every proper complexity function

T : N+ → N+,

NTIME (T (n)) ⊆ PCP



`(n) ≤ 2Õ(T (n))2)

t(n) ≤ Õ(T (n))2)

r(n) = Õ(T (n))2)

q = 16

Σ = {0, 1}
nonadaptive

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
c = 1

s ≥ ρ


.

The notation for the list of restrictions is the same as in Theorem 1.3, and Õ(N) means

O(N · logO(1)N).

As explained in the �rst lecture, we shall reduce the problem of checking satis�ability of a

boolean circuit to problems about error correcting codes. Speci�cally, we shall use the local

testability of the Hadamard code, along with other �local� properties of this code that are

developed next.

3.1 Locally decodable codes

We begin with a de�nition.

De�nition 3.2 (Local decoding). Let C = {f : D → F} be an [n, k, d]-linear error cor-

recting code over a �eld F, and let G ∈ Fn×k be its generating matrix, meaning that

C = {G · x|x ∈ Fk2}. We thus think of G as the transformation that maps a k-symbol

long message m to a unique codeword fm : D → F. Let g : Fk → F be a function de�ned

on messages. We say g can be locally decoded from C with query complexity q, soundness

δ and error ε � shortly, a (q, δ, ε)-LDC for g, if there exists a randomized process P that

makes at most q queries into a purported codeword f : D → F and outputs a symbol σ ∈ F,
and for which the following holds. If f is δ-close to a codeword fm,

Pr [σ 6= g(m)] ≤ ε.
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The probability above is over the random choices of P . We similarly say C is a (q, δ, ε)-LDC

for a family of functions if it is a (q, δ, ε)-LDC for each function in the family.

Problem 3.1. Prove: For any δ ∈ (0, 1/4) there exists ε such that the Hadamard code is a

(q, δ, ε)-LDC for the family of F2-linear functions, where q is a �xed constant. What are ε

and q?

The following problem will be pivotal in the arithmetization, i.e., in reducing questions

about computational integrity to questions about local testability and decodability of the

Hadamard code.

Problem 3.2. Let f : Fk×k2 → F2 be the Hadamard encoding of a message m ∈ Fk×k2 where

we think of m as a k× k matrix. Prove :There exists a randomized proceduce that makes a

constant number of queries to f and satis�es these properties:

• If m = a · a> for some a ∈ Fk2 then the procedure accepts with probability 1.

• If m 6= a · a> for some a ∈ Fk2 then the procedure rejects with probability ≥ 1/4.

Recall m = a · a> means that the (i, j)-entry of m, denoted m[i, j], equals ai · aj . In other

words, m is a rank-1 matrix formed by taking the outer-product of a with itself. Notice that

a being {0, 1}-valued implies diag(m) = a where diag(m) = (m[1, 1],m[2, 2], . . . ,m[k, k]).

Hints:

• Argue that the following equation holds for all r, s ∈ Fk2 if and only if m = a · a> for

some a ∈ Fk2:
〈r, diag(m)〉 · 〈diag(m), s〉 = 〈r · s>,m〉

where 〈r · s>,m〉 =
∑k

i,j=1(r · s>)[i, j] ·m[i, j].

• What is the probability that equality holds in the above equation when m is not a ·a>

and r, s are picked uniformly at random from Fk2 ?

3.2 Arithmetization

The starting point of our reduction is an instance of circuit-SAT:

De�nition 3.3. A boolean circuit φ with k gates φ1, . . . , φk, is given by a directed acyclic

graph with k vertices, fan-in 2, and vertices are labeled by a gate-type which can be AND

or NOT. An assignment is a mapping α : [k]→ {0, 1} and we say α satis�es φ i�

• φi is the AND of φj , φj′: α(i) = α(j) · α(j′).

• φi is the NOT of φj: α(i) = 1− α(j)

• Output: α(k) = 1
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We say φ is satis�able if it has a satisfying assignment and otherwise we say φ is unsatis�able.

Finally, circuit-SAT is the language containing all satis�able circuits.

To �arithmetize� this set of constraints, i.e., to be able to use it in a Hadamard-based PCP

construction, we expand the information in α quadratically, and seek an assignment to a

larger problem that is nevertheless equivalent to the former one. This latter problem will

be equivalent to Problem 3.2

De�nition 3.4. β ∈ Fk×k2 satis�es φ if the following holds :

• ∀i, j : βi,j = βi,i · βj,j

• φi is an AND constraint: βi,i = βj,k

• φi is a NOT constraint: βi,i = βj,j + 1

• Output: βk,k = 1

Problem 3.3. Prove: α ∈ Fk2 satis�es φ according to De�nition 3.3 ⇐⇒ β = α · αT and β

satis�es φ according to De�nition 3.4.

Problem 3.4. Prove Theorem 3.1, using Theorem 2.4 and the previous problems in this

session. Further hints:

• You may quote the following Theorem: Let L ∈ NTIME (T (n)). Then there exists

a deterministic reduction running in time Õ(T (n)) from L to circuit-SAT. In par-

ticular, an instance of L of size n is reduced to an instance of circuit-SAT of size

Õ(T (n)).

• Use Problem 3.3 to reduce circuit to instance of De�nition 3.4

• Ask prover to provide Hadamard encoding of matrix via a codeword f .

• Use Theorem 2.4 to test the proof

• Assuming linearity-test past, assume f is close to a Hadamard codeword.

• Use the problems of this session to test all constraints of De�nition 3.4 via a constant

number of queries to f .
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Previously we obtained a PCP system based on the Hadammard code, its veri�er makes a

constant number of queries but the proof is exponentially long.

In the next few sessions we will study algebraic tools that reduce proof length while main-

taining a small (and even constant) number of queries.

4.1 Reed-Solomon (RS) and Reed-Muller (RM) codes

In what follows, a monomial M is an expression of the form M ,
∏m
i=1X

di
i . It's degree in

the i'th variable is degXi
(M) , di, it's individual degree is degi(M) , maxi di, and its total

degree, or, simply, degree is
∑

i di. A polynomial P is a sum of monomials P =
∑

jMj , and

it's (ith/individual/total) degree is the maximal degree of a monomial Mj appearing in it.

De�nition 4.1 (RM and RS codes). Let F be a �nite �eld and m, d be integers. The

m-variate, degree-d Reed-Muller (RM) code over F is

RM[F, d,m] = {f : Fm → F|deg(f) ≤ d}

In other words, f belongs to RM[F, d,m] i� there exists a polynomial P ∈ F[X1, . . . , Xm] of

degree at most d such that P (x1, . . . , xm) = f(x1, . . . , xm).

When m = 1 the code is called a Reed-Solomon (RS) code and denoted RS[F, d].

Problem 4.1. Prove the so-called �Schwartz-Zippel Lemma�, which is the following lower

bound on the distance of RM[F, d,m]: If f ∈ RM[F, d,m] is non-zero, then it's relative

hamming weight is at least 1− d/|F|. Hint: Induction on m.

4.2 Low degree testing

There is a natural test for RM-codes, suggested by the following problem. To state it we

need some notation. A line in Fm is a function linea,b : F→ Fm given by linea,b(x) = a ·x+ b

where a = (a1, . . . , am) ∈ Fm is the slope and b = (b1, . . . , bm) is the shift. Similarly, a

plane in Fm is a function planea,a′,b : F2 → F given by planea,a′,b(x, y) = a · x + a′ · y + b.

(Higher-dimensional planes are similarly de�ned). The restriction of a m-variate function

f : Fm → F to a line linea,b, or a plane planea,a′b respectively, is

f |linea,b(x) = f(linea,b(x)), f |planea,b(x, y) = f(planea,a′,b(x, y)), respectively.
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Problem 4.2. Assume dm < |F|. Then f ∈ RM[F, d,m] if and only if for every a, b ∈ Fm

we have f |linea,b ∈ RS[F, d], which happens i� for every a, a′, b ∈ Fm we have f |planea,a′,b ∈
RM[F, d, 2]. (The last equivalence follows easily from the �rst but we need both later on.)

4.3 The �Plane-vs.-Plane� tester

The converse to Problem 4.2 is known as a �low-degree test� (LDT) and by now a number

of LDTs are known (cf. Arora et al. [1998]; Polishchuk and Spielman [1994]; Rubinfeld

and Sudan [1996]; Arora and Sudan [2003]). The following one is due to Raz and Safra

[1997] (a more complete analysis appears in Moshkovitz and Raz [2008]). In what follows

we de�ne agree(f, g) , 1 − rHamm(f, g) to be the agreement between two functions f, g :

D → Σ, and for S a set of functions with domain D and range Σ we de�ne agree(f, S) =

maxg∈S agree(f, g).

Theorem 4.2. For integers m, d and �nite �eld F there exists ε0 = poly(md/|F|) such that

for every function f : Fm → F we have

agree(f,RM[F, d,m]) ≥ Ea,a′,b
[
agree(f |planea,a′,b ,RM[F, d, 2])

]
− ε0

Problem 4.3. What are the basic LTC parameters � proximity parameter, query com-

plexity, and soundness � of RM-codes that can be deduced from the previous Theorem?

We will not provide the full proof of the Theorem here. Rather, for the remainder of this

session we focus on a key lemma in the proof, stated next. Compared to Theorem 4.2, in the

lemma we �x m to the simplest nontrivial value 3, and the right hand side is quadratically

smaller.

Lemma 4.3 (Base-case). For integer d and �nite �eld F there exists ε0 = poly(d/|F|) such
that for f : F3 → F

agree(f,RM[F, d, 3]) ≥
(
Ea,a′,b

[
agree(f |planea,a′,b ,RM[F, d, 2])

])2
− ε0

Let Planes be the set of planes in F3. A plane oracle is a function O : Planes→ RM[F, d, 2]

which assigns to each plane in F3 a degree-d bivariate polynomial. For plane, plane′ two

non-parallel planes (which intersect at a line line) we say plane and plane′ are consistent,

denoted O(plane) ≡ O(plane′), if the restriction of O(plane) to line agrees with the restriction

of O(plane′) to line.

Problem 4.4. Prove: If

Ea,a′,b
[
agree(f |planea,a′,b ,RM[F, d, 2])

]
≥ γ
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Then there exists a plane oracle O such that

Pr
plane,plane′

[
O(plane) ≡ O(plane′)

]
≥ γ2 − d+ 1

|F|
.

Hints: De�ne O = Of to be the oracle which assigns to plane the polynomial that has

maximal agreement with f |plane, breaking ties arbitrarily. Compare the probabilities of the

following three experiments:

1. Pick a random point x ∈ F3 and then a random plane plane passing through it; de�ne

an indicator random variable Zx for the event �Of (plane) agrees with f on x�.

2. Pick a random point x ∈ F3 and then two planes plane, plane′ passing through it;

de�ne an indicator random variable Z ′x for the event �Of (plane) agrees with f on x

and Of (plane′) agrees with f on x�.

3. Pick two random planes plane, plane′; de�ne the indicator random variable for the

event Of (plane) ≡ Of (plane′).

You may use the inequality E
[
X2
]
≥ (E [X])2 which holds for any real-valued random

variable X.

From here on we analyze O using its consistency graph

GO ,
(
VO = Planes, EO = {(plane, plane′)|O(plane) ≡ O(plane′) or plane ∩ plane′ = ∅}

)
Problem 4.5. Prove: For every non-edge (plane, plane′) 6∈ EO,

Pr
plane′′

[
(plane, plane′′) ∈ EO and (plane′, plane′′) ∈ EO

]
≤ d+ 1

|F|

Hints: By symmetry, assume wlog that line = plane ∩ plane′ = {(x, 0, 0)|x ∈ F}. Bound the

probability of each of these events: (i) plane′′∩ line = ∅, and (ii) plane′′∩ line 6= ∅ and plane′′

agrees with both plane and plane′ on their common intersection.

Problem 4.6. Let G be a graph with the following property: For any non-edge (u, v), the

number of common neighbors of u and v is at most ε|V |. (Our consistency graph satis�es

this with ε = d+1
|F| .) Prove that one can remove O(

√
ε|V |2) edges from V and partition the

residual graph into singletons and cliques of size ≥ 2
√
ε|V |. Hints: analyze the following

process:

1. While there exists a vertex v with less than 2
√
ε|V | neighbors, remove all its incident

edgs; If no such v exists then

2. A vertex u is active if (i) u is not isolated (i.e., has at least 1 edge) and (ii) u's

connected component is not a clique. If no u is active then terminate; Else,
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3. Pick active u arbitrarily; remove all edges between the neighbors of u and the vertices

at distance 2 from u; go back to step 1.

Bound the number of edges removed in steps 1, 3. Argue that upon termination all vertices

are either singletons, or members of large cliques.

Problem 4.7. Complete the proof of Lemma 4.3 using the Schwartz-Zippel Lemma (Prob-

lem 4.1).
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Recall that the Hadamard-based, exponential length PCP construction leading to Theo-

rem 3.1 had two essential parts, an LTC tester for the Hadamard code, and a reduction

from satis�ability to LTC testing. In Theorem 4.2 we proved the analog of Theorem 2.4,

and we now focus on reducing satis�ability to low-degree testing. In what follows anm-to-m′

polynomial map ~P : Fm → Fm′
is a sequence of m′ polynomials P1, . . . , Pm′ ∈ F[X1, . . . , Xm]

and the degree of ~P is de�ned to be the maximal degree of P1, . . . , Pm′ .

De�nition 5.1 (Algebraic Constraint Satisfaction Problem (ACSP)). An instance of ACSP

is a tuple ψ = (m,F, H, ~P1, . . . , ~Pk, Q1, . . . , Qa) satisfying

• m is an integer

• F is a �nite �eld and H ⊂ F

• ~P1, . . . , ~Pk is a sequence of m-to-m polynomial maps

• Q1, . . . , Qa ∈ F[X1, . . . , Xm, Y1, . . . , Yk]

An assignment to ψ is a polynomial A ∈ F[X1, . . . , Xm]. We say it satis�es ψ i�

∀~x = (x1, . . . , xm) ∈ Hm, Qi

(
~x,A

(
~L1(~x)

)
, . . . , A

(
~Lk(~x)

))
= 0 (2)

For every i = 1, . . . , a. We say ψ is satis�able i� there exists A that satis�es it. The language

ACSP-SAT contains all satis�able ACSP instances.

We will now show two reductions: (i) From circuit-SAT (De�nition 3.3) to ACSP-SAT, and

(ii) from ACSP-SAT to low-degree testing. Combining the two (and picking parameters in a

good way) will lead to a PCP system with polynomial-length proofs, poly-logarithmic query

complexity, perfect completeness and constant positive soundness (cf. Theorem 5.4).

5.1 Arithmetization: From circuit-SAT to ACSP-SAT

The �rst reduction is captured by the following theorem.

Theorem 5.2 (Reduction to ACSP). There exists a polynomial time reduction from circuit-

SAT to ACSP where a circuit φ with n gates is reduced to ψ = (m,F, H, ~P1, . . . , ~P3, Q1, Q2)

satisfying:

• |H|m = Θ(n)
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• The individual degree of each ~Pi is at most |H|

• The individual degree of Qi in xj is |H| and the degree in Y1, Y2, Y3 is O(1).

• If ψ is satis�able then it is satis�ed by A ∈ F[X1, . . . , Xm] of individual degree at most

|H|.

Problem 5.1. Prove the following Theorem 5.2. Hints:

• Pick arbitrary H ⊂ F and associate the n gates of φ with Hm arbitrarily.

• Let p2 : Hm → Hm de�ne the map that sends a gate-index i to its �rst input j.

Similarly, de�ne p3 to be the map that sends i to its second input k (if it exists). Let
~P2, ~P3 be the low-degree extension (or interpolation) of p2, p3.

• Let Q̂1(Y1) be the polynomial that vanishes i� its input is {0, 1}-valued.

• Let Q̂AND(Y1, Y2, Y3) be the polynomial that vanishes i� Y1 is the AND of Y2, Y3,

assuming all three variables are {0, 1}-valued. Similarly de�ne Q̂NOT to be the �con-

straint� that checks a NOT gate.

• Use multivariate Lagrange interpolation to check Q̂1 for every ~x ∈ Hm. This will be

Q1. Similarly use Lagrange interpolation to check the right constraint for each gate.

(How do you check that the last gate evaluates to 1?)

5.2 Zero-testing: From ACSP-SAT to low-degree testing

The second reduction is given by the next theorem, due to Alon and Tarsi [1999].

Theorem 5.3 (Combinatorial Nullstellensatz). Let Q ∈ F[X1, . . . , Xm] have individual de-

gree di in variable Xi. Let H ⊂ F be of size h = |H|. Let SplitH(Z) =
∏
α∈H(Z − α).

Then

∀~x = (x1, . . . , xm) ∈ Hm Q(~x) = 0

if and only if there exist Q1, . . . , Qm ∈ F[X1, . . . , Xm] such that

Q(X1, . . . , Xm) =
m∑
i=1

Qi(X1, . . . , Xm) · SplitH(Xi) (3)

degj(Qi) ≤

{
max{0, dj − h} j ≤ i
di otherwise

Problem 5.2. Prove Theorem 5.3. One direction is easy. For the harder direction

• Start with m = 1. Consider Q(X1) mod SplitH(X) and write

Q(X1) = SplitH(X1) ·Q1(X1) +R(X1)
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• What are the degrees of Q1 and R?

• Prove that R ≡ 0.

• Use induction to prove the Theorem for general m.

5.3 A polynomial length, polylogarithmic query, PCP Theo-

rem

Combining Theorem 4.2, Theorem 5.2 and Theorem 5.3 gives

Theorem 5.4 (PCP with polynomial length proofs and polylogarithmic query complexity).

There exists a constant ρ > 0 such that for every proper complexity function T : N+ → N+,

NTIME (T (n)) ⊆ PCP



`(n) ≤ poly(T (n))

t(n) ≤ poly(T (n))

r(n) = O(log T (n))

q = poly(log T (n))

Σ = {0, 1}
nonadaptive

∣∣∣∣∣∣∣∣∣∣∣∣∣
c = 1

s ≥ ρ


.

The notation for the list of restrictions is the same as in Theorem 1.3.

Problem 5.3. Prove Theorem 5.4. You may assume ~Pi is a 1-to-1 map on Fm. Hints:

• The general strategy is similar to that employed in proof of Theorem 3.1. Soundness

is the hardest part, and to argue it we will examine two �bad cases�: (i) that a proof

is not close to being low-degree, and (ii) that a proof is low-degree but the relevant

polynomials do not satisfy the ACSP.

• Pick |H| ≈ log n and |F | = poly(|H|) and m = log n/ log logn.

• De�ne a proof to be the evaluation of polynomials A,A
(1)
1 , . . . , A

(1)
m , A

(2)
1 , . . . , A

(2)
m ∈

F[X1, . . . , Xm] where A supposedly satis�es Q1, Q2 from Theorem 5.2 and the A(1)

and A(2) polynomials show that Equation 2 holds according to Theorem 5.3.

• De�ne a veri�er that checks Theorem 4.2, Equation 2 and Equation 3.

• Using Theorem 4.2 argue that if any of the A polynomials is not close to low-degree,

the proof will be rejected with probability 99% (What are the query complexity and

proximity parameter?)

• If all polynomials are close to low-degree, then use Problem 4.1 to argue a constant

rejection probability for the tests corresponding to Equation 2 and Equation 3.
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The Hadammard based PCP (Theorem 3.1) has constant query complexity, alphabet size,

and soundness but super-polynomial length proofs. The RM-based PCP has polynomial

length proofs and constant soundness but polylogarithmic query complexity and alphabet

size. We now study two methods for combining the best of both worlds to get polynomial

length proofs with constant soundness, alphabet size and query complexity. The methods

are code concatenation and proof composition. We start with an illustration of concatenation,

the simpler one.

6.1 Concatenation

Problem 6.1. Suppose C = {f : D → F2k}, D ⊆ F2k is a linear code of rate ρ over F2k �

the �nite �eld of size 2k. Recall that each entry y = f(x), x ∈ D of a codeword f ∈ C is an

element y of F2k . Assume F2k -elements are represented using a basis b1, . . . , bk ∈ F2k that

is linearly independent over F2. We thus get a transformation from F2k to Fk2. Concatenate
C with the k-dimensional Hadamard code by replacing y by the Hadk encoding of y (cf.

De�nition 3.2) for each x ∈ F2k . Denote the concatenated code by C ◦ Hadk.

1. What are the alphabet, blocklength, rate, and relative distance of the concatenated

code?

2. Prove: If C is a (q, ε, δ)-LTC over alphabet F2k , then C ◦Hadk is a (q′, ε′, δ′)-LTC over

alphabet F2. What are q′, ε′, δ′?

6.2 PCP of Proximity (PCPP)

The idea of proof composition was introduced by Arora and Safra [1998]. The basic idea is

as follows. Assume we have a nonadaptive veri�er V which on circuit-SAT instance φ of

size n makes q(n) queries. Nonadaptivity means we can view V as taking the randomness R

and computing from it two things: (i) a set of query indices IR, and (ii) a decision predicate

DecR that decides whether to accept or reject the answers given by the proof oracle. The

crucial point is that DecR is an instance of circuit-SAT and typically its size is much

smaller than n. So we can request the prover to provide an auxiliary proof for each DecR
that V wishes to check. And then we compose V with an inner veri�er VR that checks DecR
using this auxiliary proof.
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The main problem with this approach is that each individual DecR is satis�able, so a ma-

licious prover can cheat by giving answers that are inconsistent with a proof that V would

accept for φ. One way to solve this problem is to use PCPs of Proximity, introduced by

Ben-Sasson et al. [2004]; Dinur and Reingold [2004].

De�nition 6.1 (PCP of Proximity (PCPP)). Let φ be an instance of circuit-SAT with

n wires. A (`, t, r, d, q,Σ)-restricted PCPP veri�er for φ is a randomized algorithm V that

receives a randomness input R ∈ {0, 1}r and outputs after t steps a sequence of q indices

IR = (i1, . . . , iq), ij ∈ [n + `] along with a decision predicate DecR : ΣI → {accept, reject}
which is a circuit of size d with inputs in the �nite alphabet Σ. The parameter ` is called the

PCPP length. We say V has completeness c ∈ [0, 1] and soundness function s : [0, 1]→ [0, 1]

for C if:

• Completeness: If α ∈ {0, 1}n satis�es φ then there exists π ∈ Σ` such that

Pr
R∈{0,1}r

[DecR ((α ◦ π)|IR) = accept] ≥ c

where (α ◦ π)|IR ∈ ΣIR is the restriction of α and π to the query set IR. (I.e., (α ◦ π)

is a string of length n+ ` over Σ and we assume Σ ⊇ {0, 1}.)

• Soundness: If α ∈ {0, 1}n does not satisfy φ, then for all π ∈ Σ`

ER∈{0,1}r [rHamm ((α ◦ π)|IR ,SAT(DecR))] ≥ s(rHamm(α,SAT(φ))).

where SAT(φ) is the set of assignments satisfying φ (and SAT(DecR) is similarly

de�ned). If φ is not satis�able (i.e., SAT(φ) = ∅) we de�ne rHamm(α,SAT(φ)) to be

1.

Finally, we say that φ has a (`, t, r, d, q,Σ, ε)-PCPP if it has a (`, t, r, d, q,Σ)-restricted PCPP

veri�er with completeness c = 1 and soundness function satisfying s(δ) ≥ ε · δ.

Problem 6.2. Show that PCPPs imply PCPs: Suppose there exists a polynomial time

algorithm that for every circuit-SAT instance φ of size n produces a veri�er Vφ that gives

a (`, t, r, d, q,Σ, ε)-PCPP. Then circuit-SAT ∈ PCP

(
list of restrictions

∣∣∣∣∣ cs
)
. Fill in

the restrictions and the value of c, s as a function of the parameters of the PCPP.

Problem 6.3. Let C = {w : [n]→ F2} be an [n, k, d]F2-linear code and φ a circuit deciding

membership in C, i.e., w ∈ C i� φ(w) = 1. (Such φ can be constructed given the parity

check matrix of C.) Suppose φ has a (`, t, r, d, q,Σ, ε)-PCPP. Then there exists a (q′, ε′, δ′)-

LTC that can be constructed from C and the PCPP system. What are the basic coding

parameters of the LTC (i.e., alphabet, dimension, blocklength and distance)? What are

q′, ε′, δ′)?

6�2



Problem 6.4. Convert our two PCP theorems � Theorem 3.1, Theorem 5.4 � into PCPP

theorems. What are the relevant parameters `, t, r, d, q, ε?

Problem 6.5. Prove the PCPP composition Theorem: If φ of size n has a (`, t, r, d, q, ε)-

PCPP and every φ′ of size d has a (`′, t′, r′, d′, q′, ε′)-PCPP, then φ has a (`′′, t′′, r′′, d′′, q′′, ε′′)-

PCPP. What are (`′′, t′′, r′′, d′′, q′′, ε′′) as a function of (`, t, r, d, q, ε) and (`′, t′, r′, d′, q′, ε′)?
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Both PCP Theorems we saw so far � Theorem 3.1 and Theorem 5.4 � used algebraic

methods to obtain a gap between completeness, which thus far has been perfect (i.e., c = 1),

and soundness. The method of PCPP proof composition (Problem 6.5) reduces soundness

while reducing query complexity and increasing proof length. We now study gap ampli�ca-

tion due to Dinur [2007], a method that boosts soundness e�ciently. Later on we will see a

di�erent method that achieves a similar e�ect, namely, parallel repetition Raz [1998].

Roughly speaking, gap ampli�cation is a method that doubles the size of a CNF while

doubling the soundness parameter. In more words, it is reduction that maps a constraint

satisfaction problem (CSP) instance φ of arity 2 to a di�erent CSP instance φ′ of arity

2, where (i) φ′ is only c times larger than φ where c is an absolute positive constant and

size is measured by number of constraints, (ii) if φ is satis�able then so is φ′, and (iii) If

every assignment falsi�es at least an ε-fraction of the constraints of φ then every assignment

falsi�es at least a 2ε-fraction of φ. Formally,

Theorem 7.1 (Gap Ampli�cation Theorem). There exists a constant size alphabet Σ and

constant smax > 0 such that

PCP



` = `0(n)

q = 2

Σ

r = r0(n)

t ≤ T0(n)

nonadaptive

∣∣∣∣∣∣∣∣∣∣∣∣∣
c = 1

s = s0(n)


⊆ PCP



`1(n) = O(`0(n))

q = 2

Σ

r1(n) = r0(n) +O(1)

t ≤ T0 + poly(`0(n)))

nonadaptive

∣∣∣∣∣∣∣∣∣∣∣∣∣
c = 1

s(n) ≥ min(2s0(n), smax)


.

Let us explore a few corollaries of this theorem.

Problem 7.1. Prove the following variant of Theorem 1.4 which obtains polynomial-length

PCPs with constant soundness, alphabet size and query complexity: There exists ε > 0 such

that

NTIME (T (n)) ⊆ PCP


q = 2

Σ = O(1)

t(n) ≤ poly(T (n))

`(n) ≤ poly(T (n))

nonadaptive

∣∣∣∣∣∣∣∣∣∣∣
c = 1

s ≥ ε


Problem 7.2. Prove the following variant of Theorem 1.3 with quasilinear length proofs and

constant soundness and alphabet size (but with non-succinct, polynomial, running time):

7�1



There exists ε > 0 such that

NTIME (T (n)) ⊆ PCP



`(n) ≤ T (n) · polylog(T (n))

t(n) ≤ poly(T (n))

r(n) = log(`(n)) +O(1)

q ≤ 2

Σ = O(1)

nonadaptive

∣∣∣∣∣∣∣∣∣∣∣∣∣
c = 1

s ≥ ε


.

Hints: Use Theorem 7.1 and the following quasilinear PCP result from Ben-Sasson and

Sudan [2005]:

NTIME (T (n)) ⊆ PCP


`(n) = T (n) · polylog(T (n))

q = O(1)

Σ = F2

t(n) = T (n)O(1)

∣∣∣∣∣∣∣∣∣
c = 1

s ≥ 1
polylog(T (n))

.

7.1 Gap Ampli�cation Theorem � Proof overview

It will be easier to prove Theorem 7.1 using graph theory, so we restate the theorem in this

language. To do this we need the following de�nition.

De�nition 7.2 (Constraint Graphs and their soundness). A Constraint-Graph (CG) is

a triple G = (G,Σ, C) where G = (V,E) is an undirected graph, with self loops and

multiple edges. Σ is an alphabet. C is a set of constraints, one for each edge: C =

{Ce : Σ× Σ→ {accept, reject}|e ∈ E}.
An assignment is a function A : V → Σ. The soundness of A is the fraction of the constraints

that are not satis�ed by it,

S(A,G) = Pr
e∈E,e(u,v)

[Ce(A(u), A(v)) = reject].

The soundness of G is is the minimal soundness obtained by an assigment,

S(G) = min
A:V→Σ

S(A,G).

For a soundness function Ŝ : N+ → [0, 1], the language Gap-CG(Σ, S) is the promise

problem de�ned by

Yes = {G|S(G) = 0}

No = {G|S(G) ≥ Ŝ(n)}

The following is a restatement of Theorem 7.1 using constraint graphs.
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Theorem 7.3 (Theorem 7.1 restated with constraint graphs). For every su�ciently large Σ

there exists a constant smax > 0 (depending on |Σ|) such that Gap-CG(Σ, s(n)) is reducible

in polynomial time to Gap-CG(Σ,min{2s(n), smax}), where n denotes the size of the graph,

and the reduction increases graph size only by a constant multiplicative factor.

7.2 Reduction to expander constraint graphs

There are three steps in the reduction of Theorem 7.3. First, the constraint graph G0

is converted into a special kind of graph G1. The main attributes of G1 are that it has

constant degree, it is regular � all vertices have same number of neighbors, each vertex has

a self-loops, and, most importantly, it is expanding under the following de�nition.

De�nition 7.4 (Expander graphs). Let d be an integer and λ < d. A (d, λ)-expander graph

G = (V,E) is a d-regular undirected graph with self-loops for each vertex, which satis�es:

For any F ⊂ E and i ≥ 0, the probability that a random walk stating at a random edge in

F makes its (i+ 1)-step in F is at most |F ||E| +
(
λ
d

)i
.

The following lemma is the �rst step in the proof of Theorem 7.3, its proof is rather standard

and we omit it (cf. Dinur [2007]). It says that by incurring a constant reduction in soundness

we can assume without loss that our constraint graph is an expander.

Lemma 7.5 (Expanderizing). For every su�ciently large integer d and constant λ >

2
√
d− 1 there exists an absolute constant c1 > 1 satisfying the following. Gap-CG(Σ, s(n))

is reducible in polynomial time to Gap-CG(Σ, s(n)/c1). Furthermore, a constraint graph

G with n edges is reduced to a constraint graph G1 over a (d, λ)-expander graph with O(n)

vertices (and edges).

7.3 Repetition and gap ampli�cation

To discuss the main step in the reduction, the one where soundness in increased, we de�ne

the product of a constraint graph and its assignment.

De�nition 7.6. Let G = (G = (V,E),Σ, C) be a constraint graph and t be an integer.

The product graph Gt = (V,Et) has the same vertex set V as that of G, and for every

path p of length t in G with endpoints v0, vt there is an edge labeled p from v0 to vt in E
t.

Let B(v, t) denote the ball of radius t around v, i.e., it is the set of vertices of distance at

most t from v. An assignment to Gt is a mapping which assigns to every v ∈ V a label

Â(v) ∈ ΣB(v,t). The constraint associated with path p (of length t) with endpoints v0, vt
accepts an assignment Â(v0), Â(v1) if and only Â(v0) and Â(v1) agree on the assignment to

p and satisfy all constraints of G that pertain to edges on p.

Lemma 7.7 (Gap ampli�cation). For every integers d, alphabet size |Σ| and constant λ < d

there exists a constant β satisfying the following. If G is a constraint graph over a (d, λ)-

expander and t an integer, then S(Gt) ≥ β
√
t ·min{S(G), 1/t}.
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The �nal part in the proof of Theorem 7.3 reduces the alphabet from |Σ|dt back to a constant,
using PCPP composition.

Lemma 7.8 (Alphabet reduction). For every Σ′, |Σ′| > |Σ| there exists a constant c3 > 1

such that Gap-CG(Σ′, s′(n)) is reducible to Gap-CG(Σ, s(n)/c3) via a polynomial time

reduction, which increases graph-size by at most a constant factor.

Problem 7.3. Prove Theorem 7.3 using the previous three lemmata.
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