>
v

Technion IIT
Department of Computer Science
Fall 2013-14

Course 236646:

SUCCINCT COMPUTATIONAL
INTEGRITY (SCI) AND
PROBABILISTICALLY CHECKABLE
PROOFs (PCP)

Eli Ben-Sasson

Table of Contents

Lecture 1: Introduction

1.1 Succinct Computational Integrity and Hardness of Approximation 1-1
1.2 Complexity Classes defined by PCP verifiers 1-2
1.3 Two variants of the PCP Theorem 1-3
1.4 Bibliographical notes L L 1-4
Lecture 2: Local codes

2.1 Error correcting codes Lo L 2-1
2.2 Testers for codeword integrity oo 2-1
2.3 The BLR Theorem: Linearity functions are locally testable 2-3
2.4 Proving the BLR Theorem 2-3
Lecture 3: Hadamard code based PCP of exponential length

3.1 Locally decodable codes 3-1
3.2 Arithmetization 32
Lecture 4: Low degree testing of multivariate polynomials

4.1 Reed-Solomon (RS) and Reed-Muller (RM) codes 4-1
4.2 Low degree testingo 4-1
4.3 The “Plane-vs.-Plane” tester oL 4-2
Lecture 5: Arithmetization using low degree polynomials

5.1 Arithmetization: From circuit-SAT to ACSP-SAT 5-1
5.2 Zero-testing: From ACSP-SAT to low-degree testing 5-2
5.3 A polynomial length, polylogarithmic query, PCP Theorem 5-3
Lecture 6: PCPs of Proximity and Proof Composition

6.1 Concatenation 6-1
6.2 PCP of Proximity (PCPP) o .. 6-1

Lecture 7: Soundness boosting via gap amplification

7.1 Gap Amplification Theorem — Proof overview

7.2 Reduction to expander constraint graphs oL

7.3 Repetition and gap amplification

References

LECTURE 1

INTRODUCTION

OCTOBER 15 2013
LECTURER: Eli Ben-Sasson ScriIBE: Eli Ben-Sasson

This lecture is devoted to explaining the two versions of the PCP theorem that we will study
in this course. We start next with informal description and motivation, followed by formal
definitions of the theorems that address these goals.

1.1 Succinct Computational Integrity and Hardness of Ap-
proximation

The introduction of interactive proofs Babai and Moran [1988]; Goldwasser et al. [1989] led
quickly to many results that studied various forms of proof systems. This course focuses
on Probabilistically Checkable Proofs (PCPs), also known as holographic, or transparent,
proofs. These are proof systems in which a prover writes a proof for a given statement
and the verifier then “tests”, or “verifies” the correctness of the proof via an efficient and
randomized procedure that, in particular, reads only a negligible part of the proof and yet
is “valid”, meaning that correct proofs of true statements are accepted with high probability
and any “proof” of a false statement is rejected with high probability. Early on, two distinct
possible use cases were offered for such proofs:

Succinct Computational Integrity Babai et al. [1991] pointed out that such proof
systems can offer a succinct solution to the computational integrity problem. We start
with a Verifier V holding the description of a nondeterministic machine M. She wishes to
have an untrusted prover P simulate the execution of M for T steps and report to her the
outcome of this computation. The problem of computational integrity is that if P cannot
be trusted, how can V trust his output? A trivial solution is for V' to ask P to describe his
nondeterministic choices and then simulate M’s execution. Babai et al. [1991] showed that,
using PCPs (which they called holographic proofs there), V' can obtain reasonable confidence
in the integrity of P’s computation by running a (randomized) verification protocol that costs
only poly(|M|,logT) steps, given random access to bits of the proof. Even better, P can
generate the relevant proof in time 7" - poly(| M|, T).

Hardness of Approximation Many NP-complete problems start with a set of constraints
over n variables and ask whether there exists an assignment that satisfies all of the con-
straints. Examples of such problems are graph-coloring, 3SAT and SetCover. In lieu of
polynomial-time algorithms for solving these problems, a natural question to ask is whether
there exist polynomial-time algorithms that are guaranteed to find an assignment that sat-

1-1

isfies a non-negligible fraction of the constraints, where this fraction is measured relative to
the (possibly not efficiently attainable) optimal assignment, one that maximizes the fraction
of satisfied constraints. Feige et al. [1996] showed that the PCP Theorem implies that for

certain optimization problems, no nontrivial solutions exists unless P = NP.

1.2 Complexity Classes defined by PCP verifiers

At the core of a PCP system lies a verifier — the randomized machine that checks the
perceived correctness of proofs. Our intuitive definition of a “proof” is of a sequence of /¢
symbols from some finite alphabet ¥. However, since we will severely limit the number
of symbols read from a proof, we prefer to view it as an oracle, i.e., as a function m :
{1,...,¢} — X. This way, a machine with oracle access to 7 can specify an index i of
some entry of the proof and obtain its value within O(1) steps, without needing to move its
reading head to position ¢ on the tape.

Definition 1.1 (PCP-Verifier). A PCP-verifier, or simply, verifier, is a randomized Turing
machine V' with access to proof oracle, or, simply proof w. On input x and random coin
tosses R € {0,1}*, V makes a number of queries to m and outputs either accept or reject.
We denote by V™ [z; R] the output of V' on input x, proof 7 and random coins R. If the
queries and decision predicate do not depend on answers to previous queries we say V is
nonadaptive. (Most verifiers we shall encounter here are nonadaptive.)

Being interested in efficient verifiers, we are going to limit some of their computational re-
sources such as the running time, and the length and number of bits read from the proof.
Additionally, we will require that the verifier make a correct decision with sufficient proba-
bility. Good proofs of correct statements must be accepted with a minimal probability called
the completeness parameter. Purported proofs of incorrect statements must be rejected with
a minimal probability known as the soundness parameter. The probability of error in both
the completeness and soundness cases depend on the random coin tosses of the verifier. The
restrictions and the completeness and soundness parameters may depend on the length of the
input statement. Once completeness and soundness, and the limitations on computational
resources, are fixed, we have effectively defined a complexity class. A language belongs to it
if there exists a verifier that operates under the computational restrictions and nevertheless
succeeds in judging correctly the validity of proofs with sufficiently high probability.

Definition 1.2 (PCP-defined class of languages). Given a list of computational restrictions,
a completeness function ¢ : N* — [0,1] and a soundness function s : Nt — [0,1], the
c(n)
s(n)

which there exists a verifier V, satisfying for every integer n and x € X™:

complexity class PCP | list of restrictions

) is the set of languages L C ¥* for

e Operation: Vi, on input x does not violate the listed restrictions.

1-2

e Completeness: If © € L there exists a proof m such that

P;%I[Vg[a:; R] = accept] > ¢(n).

e Soundness: If x ¢ L then for every proof m,

P]’%r[VL”[a:; R] = reject] > s(n).

1.3 Two variants of the PCP Theorem

The following variant of the PCP Theorem gives nearly optimal proof length and prover and
verifier running time. Thus, it is more tailored for positive applications to efficient generation
and checking of proofs and computations and to succinct computational integrity.

Theorem 1.3 (PCP Theorem — short proofs). There exists an absolute constant ¢ > 0
such that for every proper complexity function T : NT — NT,

t(n) < T(n) - polylog(T'(n))
t(n) < polylog(T'(n))

NTIME (T(n)) ¢ PCP | ") = log(t(n)+0(1) |ec = 1
q < 2 s > €
by = {0,1,2}
nonadaptive

Where

e /(n) is the length of the proof, or, formally, the largest index of a proof-symbol that
may be queried by V when given input of length n.

e t(n) denotes the running time of V as a function of the input length.
e 7(n) is the number of random bits required by V' on input of length n.
e g denotes the number of queries V. makes to the proof oracle.

e 3 denotes the alphabet of the proof. Fach query is answered with a single element from
this alphabet.

e nonadaptive means that the set of queries made to the proof and the decision process
based on the answers given by the oracle depend only on x and the random coins R,
and not on answers given by the oracle to previous queries.

Furthermore, for any L € NTIME (T'(n)), there exists a deterministic Prover machine Py,
running in time T (n)polylog(T'(n)) that on input x € L and nondeterministic witness w for
x, produces a proof ™ = Ty, that is accepted by Vi, with probability 1.

1-3

Next we give the version suited for applications regarding hardness of approximation.

Theorem 1.4 (PCP Theorem — query efficient and sound). For every proper complexity
function T : NT — NT and any € > 0,

IN

3
{0,1}

q
by

nonadaptive

c > 1l—e
NTIME (T'(n)) C PCP | query — type XOR < S 1 c
t(n) < poly(T(n)) -
{(n) < T(n)t+e)
r(n) < log(4(n)) +0O(1)

The notation for the list of restrictions is the same as in Theorem 1.3, and query — type
denotes the class of computations performed by the verifier after receiving the query answers.
In the case of XOR, the computation depends only on the XOR of the (three) answer bits.

A few remarks about the previous theorem are due. Notice that improving the completeness
or soundness seems unlikely (assuming P # NP). If ¢ = 1 and all other parameters are left
unchanged then P = NP because deciding whether a sequence of bits satisfies a collection of
XOR constraints is equivalent to solving a system of linear equations over the two-element
field and can be done (say, by Gaussian elimination) in polynomial time. Similarly, if s
must be less than 1/2 because a random proof (where each bit is selected by a random
coin toss) will be accepted by V' with probability 1/2. The optimality of the soundness and
completeness in conjunction with the small query complexity and simplicity of the query
type have far reaching implications to our understanding the limitations of approximation
algorithms and this will be discussed later.

1.4 Bibliographical notes

The story of the PCP Theorem and the way its proof evolved is quite interesting. An
illustrated and entertaining description of this history can be found in O’Donnell [Autumn
2005]. Each of the two variants of the PCP Theorem stated in this lecture rely on several
important works. The basic statement of a constant-query PCP characterization of NP
appeared in Arora et al. [1998] and relies on Arora and Safra [1998]. The application of
the PCP Theorem to efficient program checking (to be discussed in the following lecture)
appeared first in Babai et al. [1991] and the implication of the PCP theorem to hardness
of approximation was first observed in Feige et al. [1996]. The length-efficient PCP variant
presented in Theorem 1.3 together with its efficient prover is a combination of Ben-Sasson
and Sudan [2005]; Dinur [2007]; Ben-Sasson et al. [2005a]; Mie [2009]; Ben-Sasson et al.
[2013b,a]. The query efficient PCP variant presented in Theorem 1.4 appeared is from
Hastad [1997]; Raz [1998]; Bellare et al. [1998]; Moshkovitz and Raz [2010].

1-4

LECTURE 2

LOCAL CODES

OCTOBER 22 2013
LECTURER: Eli Ben-Sasson ScriIBE: Eli Ben-Sasson

The way a verifier checks in time ¢ the integrity of a computation run by the prover for T' > ¢t
steps, goes by asking the prover to (i) encode all relevant information about the computation
via a special error correcting code, and (1) reducing the problem of computational integrity
to the simpler problem of codeword integrity. We start by describing the kind of codes that
are amenable to “local” or “succinct” integrity testing, as needed for part (i), and later will
deal with the reduction described in (7).

2.1 Error correcting codes

We start with the definition of an error correcting code, as introduced in the 1940’s in the
pioneering work of Golay, Hamming and Shannon (cf. MacWilliams and Sloane [1977]).
Since we plan to “test” codewords at random locations we prefer to think of a codeword as
a function from indices to symbols.

Definition 2.1 (Error-Correcting Code). Let D, ¥ be finite sets and C = {f : D — X} a
set of functions from the domain D to the alphabet . We say C' is an (n,k,d)s-error
correcting code when

e The blocklength of C is n = |D|.
e The size of C is |X|*. We call k the information length and k/n is the rate of C.

e Every f,g € C, f # g, have (Hamming) distance at least d, where the (Hamming)
distance of f and g is

Hamm(f,g) = [{z € D|f(x) # g(x)}|

and the relative (Hamming) distance is rHamm(f, g) = Hamm(f, g)/n.

When ¥ is a finite field F and C is a linear space over F we call it an [n, k, d|p-linear
error correcting code (notice the slightly different bracket notation). Recall that C is linear
over F if for every f,g € C and «,8 € F the function af + Bg belongs to C, where

(af + Bg)(z) = af(x) + Bg(x).

2.2 Testers for codeword integrity

We reduce the problem of computational integrity to that of codeword integrity via use of a
codeword integrity tester, or, simply, tester. We limit our discussion to nonadaptive testers,

2-1

meaning their queries and decision predicate do not depend on answers given to previous
queries. All testers we will encounter here are nonadaptive and henceforth we will drop
further mention of this property.

Definition 2.2 (Tester). Let C = {f : D — X} be a code with blocklength n = |D| over
alphabet 3. A (nonadaptive) (t,r,q)-restricted tester for C' is a randomized algorithm 7'
that receives a randomness input R € {0,1}" and, after ¢ steps, outputs a sequence of ¢
queries x1,...,xq € D along with a decision predicate which is a mapping Dec : D? x ¥9 —
{accept, reject}.

We say T has completeness ¢ € [0,1] and soundness function s : [0,1] — [0, 1] for C' if the
following conditions hold:

e Completeness: f € C implies

. . = > c.
RGI{%I,‘I}T [Dec (:Ela y Lq, f(xl)v af(xq)) accept] ZcC

Notice that z1,...,24 and Dec may depend on R.

e Soundness: f ¢ C implies

Pr [Dec(xi,...,xq, f(x1),..., f(zq)) = reject] > s(rHamm(f, C)),
Re{0,1}"
where rHamm(f, C') = min{rHamm(f, g)|g € C'} is the minimal relative distance of f
from all codewords of C.

Finally, we say that C is a (g, €, d)-locally testable code (LTC) if it has a ¢g-query tester with
completeness ¢ = 1 and soundness function satisfying s(6’) > € for all §' > 4.

Remark (Linear codes require only linear testers). For a linear code C over a field F, let C+
be the space dual to C,

Cr={g:D—TF|>_ f(z)-g(x)=0forall feC}
zeD

where arithmetic operations are over F. A linear tester for C' is defined by a distribution p
over C+. To use such a tester, sample ¢ from Ct according to u and accept f iff Y wep f()
g(z) = 0. By definition of C this test has completeness 1, and, for instance, if y is the
uniform distribution over C* then f ¢ C is rejected with probability 1 — 1/|F| (This is
because the subset of C* that is orthogonal to f is a subspace of C of co-dimension 1.)
Ben-Sasson et al. [2005b] showed that if C' has a tester with query complexity ¢, completeness
¢, and soundness s, then it has a linear tester with query complexity ¢, perfect completeness
1, and soundness s + (1 — ¢).

Problem 2.1. Let C be a linear code that is a (gq,¢,d)-LTC for some ¢ > 0 and § =
rHamm(C') /3, where rHamm(C) is the minimal relative distance of C. Prove: The minimal
distance of C* is at most q.

2-2

2.3 The BLR Theorem: Linearity functions are locally testable

Our first example of an LTC is due to Blum et al. [1990] and says that if C' = {¢: G — H}
is the code whose codewords are homomorphisms from a group G to a group H, then C is
a (3,€,0)-LTC for fixed positive €, that are independent of G and H. For concreteness we
deal only with the case of G = (F%,+) and H = (Fa, +) where Fy is the two-element field,
the relevant code is called the Hadamard code of dimension k, denoted here by Hadg. The
proof generalizes to any G and H.

We use the notation (f,g)p for > _.p f(z)g(x), when D is clear from context we simply
write (f,g). We also use [k] for {1,...,k}.

Problem 2.2. Prove: A function f : F§ — Fy is a homomorphism iff there exists a € F}

such that f(z) = (a,z)p = Zle a;z; for all z € Fh.
Problem 2.3. Prove: the minimal distance of the k-dimensional Hadamard code is 2¥~1.
(Extra: What is the minimal distance of C' = {¢ : G — H}, as a function of |G|, |H|?)

The following tester for the Hadamard code was suggested by Blum et al. [1990].

Definition 2.3 (BLR-Tester). Let T be the tester which, on input (z,%) € F2*¥ outputs the
queries (x,y,z +y) and accepts the answers f(x), f(y), f(x +y) iff f(z)+ f(y) = f(x +y).

Problem 2.4. Formulate and prove: The BLR-tester has (perfect) completeness 1.
Next we prove the (harder) bound on the soundness function.
Theorem 2.4. If
Pr [f(z)+ fy) # flz +y)] =€ <2/9, (1)

m,yGFQk

Then rHamm(f,Hady) < 2e.

Problem 2.5. Use the previous theorem to bound from below the soundness function of
the BLR-Tester T'.

2.4 Proving the BLR Theorem

For the rest of this session we assume Equation 1 and present a word maj; that is (1) 2e-close
to f and (7)) belongs to Hadg. The first part is relatively easy to prove and the second part
is somewhat harder.

Definition 2.5 (Majority decoding). Given f : F§ — Ty let majy F5 — Fy be defined by
setting the z'" entry of maj; to be the most common value of f(z +y) + f(y). Formally,

maj(z) = majority{f(z +y) + f(y)ly € F5'}.

Problem 2.6. Prove part (i) above: rHamm(w,w') < 2-Pr,,[f(z) + f(y) # f(z +y)].

2-3

For the rest of this session we’ll focus on part (i) and prove majs € Hadg. Our first step is
to show that every entry majs(z) is selected by an overwhelming majority.

Problem 2.7. Prove: For all z € F¥,
Pr [f(z +y) + fy) = majy(z)] > 2/3.

Hints:

e Cousider y, z € sz selected randomly and independently.

o Show Pry . [f(z +y) + f(2) = f(z +2) + f(y)] = Pry. [f(x +y) + f(y) = f(z + 2) + f(2)] >
5/9.

e Notice Pry . [f(z+y)+ f(y) = f(x + 2) + f(2)] is the probability that two indepen-
dent random “votes” for maj;(z) agree. The probability that two independent iden-
tically distributed random variables agree on their value is the collision probability of
the distribution and is useful for various probabilistic arguments, as we’ll see next.

e Prove: If a {0, 1}-valued random variable Y satisfying (w.l.o.g.) Pr[Y = 1] > 1/2 has
collision probability greater than 5/9, then Pr[Y = 1] > 2/3.

Problem 2.8. Using the previous problem prove that for any x,y € F¥ we have maj;(z) +
maj;(y) = majs(z + y). Conclude maj; € Had.

LECTURE 3

HADAMARD CODE BASED PCP OF EXPONENTIAL LENGTH

OCTOBER 28 2013
LECTURER: Eli Ben-Sasson ScriIBE: Eli Ben-Sasson

We now proceed to use the local testability of the Hadamard code to prove the following
version of the PCP Theorem, one that has constant query complexity and soundness, but
very long proofs.

Theorem 3.1. There exists a constant p > 0 such that for every proper complezity function
T:NT — NT,

4(n) < 90(T(n))?)
t(n) < 0P
NTIME (T(n)) ¢ PCP | "V = O(T(n)?) | ¢ =
q = 16 S Z p
z 0.1}
nonadaptive

The notation for the list of restrictions is the same as in Theorem 1.3, and O(N) means

O(N -10g®M N).

As explained in the first lecture, we shall reduce the problem of checking satisfiability of a
boolean circuit to problems about error correcting codes. Specifically, we shall use the local
testability of the Hadamard code, along with other “local” properties of this code that are
developed next.

3.1 Locally decodable codes

We begin with a definition.

Definition 3.2 (Local decoding). Let C = {f: D — F} be an [n,k,d]-linear error cor-
recting code over a field F, and let G € F™** be its generating matriz, meaning that
C = {G-z|x € F§}. We thus think of G as the transformation that maps a k-symbol
long message m to a unique codeword f,, : D — F. Let ¢ : F¥ — F be a function defined
on messages. We say ¢ can be locally decoded from C' with query complexity ¢, soundness
0 and error € — shortly, a (q,d,¢€)-LDC for g, if there exists a randomized process P that
makes at most ¢ queries into a purported codeword f : D — F and outputs a symbol o € T,
and for which the following holds. If f is d-close to a codeword f,,,

Prioc # g(m)] <e

3-1

The probability above is over the random choices of P. We similarly say C'is a (g, J, €)-LDC
for a family of functions if it is a (g, d, €)-LDC for each function in the family.

Problem 3.1. Prove: For any § € (0,1/4) there exists € such that the Hadamard code is a
(g,0,€)-LDC for the family of Fo-linear functions, where ¢ is a fixed constant. What are €
and ¢7

The following problem will be pivotal in the arithmetization, i.e., in reducing questions
about computational integrity to questions about local testability and decodability of the
Hadamard code.

Problem 3.2. Let f: FSXk — F9 be the Hadamard encoding of a message m € Fng where
we think of m as a k X k matrix. Prove :There exists a randomized proceduce that makes a
constant number of queries to f and satisfies these properties:

e If m=a-a' for some a € IE"; then the procedure accepts with probability 1.

o If m+#a-a' for some a € IF’§ then the procedure rejects with probability > 1/4.

T

Recall m = a - a' means that the (4, j)-entry of m, denoted m[i, j|, equals a; - a;. In other

words, m is a rank-1 matrix formed by taking the outer-product of a with itself. Notice that
a being {0,1}-valued implies diag(m) = a where diag(m) = (m[1,1],m[2,2],...,m[k, k]).
Hints:

e Argue that the following equation holds for all r, s € F§ if and only if m = a-a' for
some a € F5:
(r, diag(m)) - (diag(m), s) = (r-s",m)

where (r - sT,m> = Zﬁjzl(T : ST)[Z}J‘] -mli, j].

e What is the probability that equality holds in the above equation when m is not a-a'

and r, s are picked uniformly at random from F§ ?

3.2 Arithmetization

The starting point of our reduction is an instance of circuit-SAT:

Definition 3.3. A boolean circuit ¢ with k gates ¢1,..., ¢k, is given by a directed acyclic
graph with k vertices, fan-in 2, and vertices are labeled by a gate-type which can be AND
or NOT. An assignment is a mapping « : [k] — {0,1} and we say « satisfies ¢ iff

e ¢; is the AND of @j,(ﬁj/-’ OZ(Z) = a(]) : a(j/)'
o ¢; is the NOT of ¢;: a(t) =1—a(y)

o Output: a(k) =1

3-2

We say ¢ is satisfiable if it has a satisfying assignment and otherwise we say ¢ is unsatisfiable.
Finally, CIRCUIT-SAT is the language containing all satisfiable circuits.

To “arithmetize” this set of constraints, i.e., to be able to use it in a Hadamard-based PCP
construction, we expand the information in a quadratically, and seek an assignment to a
larger problem that is nevertheless equivalent to the former one. This latter problem will
be equivalent to Problem 3.2

Definition 3.4. § € FSXk satisfies ¢ if the following holds :
o Vi, j:Bij=Bii- B,
o ¢; is an AND constraint: [3;; = B
o ¢; is a NOT constraint: 3;; = B;; +1
o Output: By =1

Problem 3.3. Prove: o € IF’; satisfies ¢ according to Definition 3.3 —= = a-a’ and j
satisfies ¢ according to Definition 3.4.

Problem 3.4. Prove Theorem 3.1, using Theorem 2.4 and the previous problems in this
session. Further hints:

e You may quote the following Theorem: Let L € NTIME (T'(n)). Then there exists
a deterministic reduction running in time O(T'(n)) from L to CIRCUIT-SAT. In par-
ticular, an instance of L of size n is reduced to an instance of CIRCUIT-SAT of size

O(T(n)).
e Use Problem 3.3 to reduce circuit to instance of Definition 3.4
e Agk prover to provide Hadamard encoding of matrix via a codeword f.
e Use Theorem 2.4 to test the proof
e Agsuming linearity-test past, assume f is close to a Hadamard codeword.

e Use the problems of this session to test all constraints of Definition 3.4 via a constant
number of queries to f.

3-3

LECTURE 4

LOW DEGREE TESTING OF MULTIVARIATE POLYNOMIALS

NOVEMBER 12 2013
LECTURER: Eli Ben-Sasson ScriIBE: Eli Ben-Sasson

Previously we obtained a PCP system based on the Hadammard code, its verifier makes a
constant number of queries but the proof is exponentially long.
In the next few sessions we will study algebraic tools that reduce proof length while main-

taining a small (and even constant) number of queries.

4.1 Reed-Solomon (RS) and Reed-Muller (RM) codes

In what follows, a monomial M is an expression of the form M £ I, X;j". It’s degree in
the i’th variable is degy, (M) £ d;, it’s individual degree is deg;(M) £ max; d;, and its total
degree, or, simply, degree is), d;. A polynomial P is a sum of monomials P =) y M;, and
it’s (ith/individual /total) degree is the maximal degree of a monomial M; appearing in it.

Definition 4.1 (RM and RS codes). Let F be a finite field and m,d be integers. The
m-variate, degree-d Reed-Muller (RM) code over F is

RMIE, d,m] = {f : F"™ — Fldeg(f) < d}

In other words, f belongs to RM[F, d, m] iff there exists a polynomial P € F[X7, ..., X,,] of
degree at most d such that P(z1,...,2m) = f(x1,...,2m).
When m = 1 the code is called a Reed-Solomon (RS) code and denoted RSIF, d].

Problem 4.1. Prove the so-called “Schwartz-Zippel Lemma”, which is the following lower
bound on the distance of RM[F,d,m]: If f € RM[F,d, m| is non-zero, then it’s relative
hamming weight is at least 1 — d/|F|. Hint: Induction on m.

4.2 Low degree testing

There is a natural test for RM-codes, suggested by the following problem. To state it we
need some notation. A line in F™ is a function line, : F — F™ given by linegp(z) = a-z+0b
where a = (a1,...,a,) € F™ is the slope and b = (by,...,by,) is the shift. Similarly, a
plane in F™ is a function plane, ./}, : F? — F given by plane, . ;(z,y) = a-z+a -y +b.
(Higher-dimensional planes are similarly defined). The restriction of a m-variate function
J:F™ = F to a line line,, or a plane plane, ., respectively, is

f\“nea’b(x) = f(linegp(x)), f|P|anea,b($vy) = f(planea,aw(x,y)), respectively.

4-1

Problem 4.2. Assume dm < |F|. Then f € RM[F,d, m] if and only if for every a,b € F™
we have fliine,, € RS[F,d], which happens iff for every a,a’,b € F™ we have f|piane, .,
RMIF, d,2]. (The last equivalence follows easily from the first but we need both later on.)

4.3 The “Plane-vs.-Plane” tester

The converse to Problem 4.2 is known as a “low-degree test” (LDT) and by now a number
of LDTs are known (cf. Arora et al. [1998]; Polishchuk and Spielman [1994]; Rubinfeld
and Sudan [1996]; Arora and Sudan [2003]). The following one is due to Raz and Safra
[1997] (a more complete analysis appears in Moshkovitz and Raz [2008]). In what follows
we define agree(f,g) = 1 — rHamm(f, g) to be the agreement between two functions f, g :
D — 3, and for S a set of functions with domain D and range ¥ we define agree(f,S) =

max,e agree(f, g).

Theorem 4.2. For integers m,d and finite field F there exists g = poly(md/|F|) such that
for every function f :F"™ — F we have

agree(fv RM[IR d7 m]) > Ea,a’,b agree(f|p|ane RM[Fu da 2]) —¢€o

a,a’,b’

Problem 4.3. What are the basic LTC parameters — proximity parameter, query com-
plexity, and soundness — of RM-codes that can be deduced from the previous Theorem?

We will not provide the full proof of the Theorem here. Rather, for the remainder of this
session we focus on a key lemma in the proof, stated next. Compared to Theorem 4.2, in the
lemma we fix m to the simplest nontrivial value 3, and the right hand side is quadratically
smaller.

Lemma 4.3 (Base-case). For integer d and finite field F there exists g = poly(d/|F|) such
that for f :F3 - F

2
agree(f, RM[F, d, 3]) > (Ew@b [agree(flptane, v, RMIF, d, 2])}) _ o

Let Planes be the set of planes in F3. A plane oracle is a function © : Planes — RM(F, d, 2]
which assigns to each plane in F3 a degree-d bivariate polynomial. For plane, plane’ two
non-parallel planes (which intersect at a line line) we say plane and plane’ are consistent,
denoted O(plane) = O(plane’), if the restriction of Q(plane) to line agrees with the restriction
of O(plane’) to line.

Problem 4.4. Prove: If

Eaas [agree(flptane, . ,» RMIF,,2])| > 7

4-2

Then there exists a plane oracle @ such that

Pr [O(plane) = O(plane)] > 7% — ——.

plane,plane’

Hints: Define @ = Oy to be the oracle which assigns to plane the polynomial that has

maximal agreement with f|pane, breaking ties arbitrarily. Compare the probabilities of the
following three experiments:

1. Pick a random point € F? and then a random plane plane passing through it; define
an indicator random variable Z, for the event “Oy(plane) agrees with f on .

2. Pick a random point € F? and then two planes plane, plane’ passing through it;
define an indicator random variable Z!, for the event “Oy(plane) agrees with f on x
and Oy (plane’) agrees with f on z”.

3. Pick two random planes plane, plane’; define the indicator random variable for the
event O (plane) = O¢(plane’).

You may use the inequality E [X?] > (E [X])? which holds for any real-valued random
variable X.

From here on we analyze O using its consistency graph
Go £ (Vo = Planes, Eg = {(plane, plane’)|O(plane) = O(plane’) or plane N plane’ = (})

Problem 4.5. Prove: For every non-edge (plane, plane’) € Eg,

d+1
Pr [(plane, plane”) € Eg and (plane’, plane”) € Eg| < El;
plane”

Hints: By symmetry, assume wlog that line = plane N plane’ = {(z,0,0)|x € F}. Bound the
probability of each of these events: (i) plane” Nline = (), and (ii) plane” Nline # () and plane”
agrees with both plane and plane’ on their common intersection.

Problem 4.6. Let G be a graph with the following property: For any non-edge (u,v), the
number of common neighbors of u and v is at most |V|]. (Our consistency graph satisfies
this with e = %.) Prove that one can remove O(y/2|V|?) edges from V and partition the
residual graph into singletons and cliques of size > 2,/¢|V|. Hints: analyze the following

process:

1. While there exists a vertex v with less than 2,/¢|V| neighbors, remove all its incident
edgs; If no such v exists then

2. A vertex w is active if (i) u is not isolated (i.e., has at least 1 edge) and (i) u's
connected component is not a clique. If no v is active then terminate; Else,

4-3

3. Pick active u arbitrarily; remove all edges between the neighbors of u and the vertices
at distance 2 from wu; go back to step 1.

Bound the number of edges removed in steps 1, 3. Argue that upon termination all vertices
are either singletons, or members of large cliques.

Problem 4.7. Complete the proof of Lemma 4.3 using the Schwartz-Zippel Lemma (Prob-
lem 4.1).

4-4

LECTURE 5

ARITHMETIZATION USING LOW DEGREE POLYNOMIALS

NOVEMBER 26 2013
LECTURER: Eli Ben-Sasson ScriIBE: Eli Ben-Sasson

Recall that the Hadamard-based, exponential length PCP construction leading to Theo-
rem 3.1 had two essential parts, an LTC tester for the Hadamard code, and a reduction
from satisfiability to LTC testing. In Theorem 4.2 we proved the analog of Theorem 2.4,
and we now focus on reducing satisfiability to low-degree testing. In what follows an m-to-m’
polynomial map P :F™ — F™ is a sequence of m/ polynomials P, ..., P, € F[X1,..., X,
and the degree of P is defined to be the maximal degree of Py, ..., Ppy.

Definition 5.1 (Algebraic Constraint Satisfaction Problem (ACSP)). An instance of ACSP
is a tuple ¢ = (m,F, H, Pi,....,P., O, .. ., Qq) satisfying

e m is an integer

e [is a finite field and H C F

° .:51, . ,ﬁk is a sequence of m-to-m polynomial maps
e Q1,...,Qq €F[Xy,.... X, Y1,..., Y]

An assignment to 1 is a polynomial A € F[Xy,..., X,,]. We say it satisfies ¢ iff

Vi = (z1,...,2m) € H™, Q (f,A (El(:z)) A (Ek(f))) ~0 2)

For every i = 1,...,a. We say ¢ is satisfiable iff there exists A that satisfies it. The language
ACSP-SAT contains all satisfiable ACSP instances.

We will now show two reductions: (i) From circuit-SAT (Definition 3.3) to ACSP-SAT, and
(i1) from ACSP-SAT to low-degree testing. Combining the two (and picking parameters in a
good way) will lead to a PCP system with polynomial-length proofs, poly-logarithmic query
complexity, perfect completeness and constant positive soundness (cf. Theorem 5.4).

5.1 Arithmetization: From circuit-SAT to ACSP-SAT

The first reduction is captured by the following theorem.

Theorem 5.2 (Reduction to ACSP). There ezists a polynomial time reduction from circuit-
SAT to ACSP where a circuit ¢ with n gates is reduced to v» = (m,F, H, P,.... B, Q1,Q2)
satisfying:

o [H™ =0(n)

5-1

e The individual degree of each P; is at most |H|

o The individual degree of Q; in x;j is |H| and the degree in Y1,Ys,Ys is O(1).

o If 1) is satisfiable then it is satisfied by A € F[X1, ..., Xn] of individual degree at most

|H.
Problem 5.1. Prove the following Theorem 5.2. Hints:

e Pick arbitrary H C F and associate the n gates of ¢ with H™ arbitrarily.

e Let po : H™ — H™ define the map that sends a gate-index ¢ to its first input j.

Similarly, define p3 to be the map that sends i to its second input k (if it exists). Let

ﬁg,]33 be the low-degree extension (or interpolation) of pa, ps3.

e Let Q1(Y}) be the polynomial that vanishes iff its input is {0, 1}-valued.

o Let QAND(Yl,YQ,Yg) be the polynomial that vanishes iff Y7 is the AND of Y5, Y53,
assuming all three variables are {0, 1}-valued. Similarly define Onor to be the “con-

straint” that checks a NOT gate.

e Use multivariate Lagrange interpolation to check Q1 for every £ € H™. This will be

(1. Similarly use Lagrange interpolation to check the right constraint for each gate.

(How do you check that the last gate evaluates to 17)

5.2 Zero-testing: From ACSP-SAT to low-degree testing

The second reduction is given by the next theorem, due to Alon and Tarsi [1999].

Theorem 5.3 (Combinatorial Nullstellensatz). Let @ € F[X1,..., Xy,] have individual de-
gree d; in variable X;. Let H C F be of size h = |H|. Let Splity(Z) = [[,eq(Z — o).

Then
VE = (x1,...,2m) € H" Q(¥) =0

if and only if there exist Q1,...,Qm € F[Xy,..., X;n] such that

m

QX1 ., Xm) =Y Qi(X1,..., Xm) - Splity (X)
=1

deg (00 < { max{0,d; — h} j<i
¥ (2 —

d; otherwise
Problem 5.2. Prove Theorem 5.3. One direction is easy. For the harder direction

e Start with m = 1. Consider Q(X1) mod Splity(X) and write
Q(Xl) = Sp“tH(Xl) . QI(XI) + R(Xl)

5-2

5.3

What are the degrees of Q1 and R?
Prove that R = 0.

Use induction to prove the Theorem for general m.

A polynomial length, polylogarithmic query, PCP Theo-
rem

Combining Theorem 4.2, Theorem 5.2 and Theorem 5.3 gives

Theorem 5.4 (PCP with polynomial length proofs and polylogarithmic query complexity).

There exists a constant p > 0 such that for every proper complexity function T : Nt — N,

o(n) < poly(T'(n))
t(n) < poly(T(n))
. r(n) = O(logT(n)) c =
NTIME(I'(n) cPCP | | = poly(logT(n)) | s > p
nonadaptive

The notation for the list of restrictions is the same as in Theorem 1.35.

Problem 5.3. Prove Theorem 5.4. You may assume B is a 1-to-1 map on F™. Hints:

The general strategy is similar to that employed in proof of Theorem 3.1. Soundness
is the hardest part, and to argue it we will examine two “bad cases”: (i) that a proof
is not close to being low-degree, and (7i) that a proof is low-degree but the relevant
polynomials do not satisfy the ACSP.

Pick |H| ~ logn and |F| = poly(|H|) and m = logn/loglogn.

Define a proof to be the evaluation of polynomials A, A(ll), .. ,A%),A?), e ,Ag) €
F[X1,..., X where A supposedly satisfies Q1, Qo from Theorem 5.2 and the A®)
and A® polynomials show that Equation 2 holds according to Theorem 5.3.

Define a verifier that checks Theorem 4.2, Equation 2 and Equation 3.

Using Theorem 4.2 argue that if any of the A polynomials is not close to low-degree,
the proof will be rejected with probability 99% (What are the query complexity and
proximity parameter?)

If all polynomials are close to low-degree, then use Problem 4.1 to argue a constant
rejection probability for the tests corresponding to Equation 2 and Equation 3.

5-3

LECTURE 6

PCPs OF PROXIMITY AND PROOF COMPOSITION

DECEMBER 17 2013
LECTURER: Eli Ben-Sasson ScriIBE: Eli Ben-Sasson

The Hadammard based PCP (Theorem 3.1) has constant query complexity, alphabet size,
and soundness but super-polynomial length proofs. The RM-based PCP has polynomial
length proofs and constant soundness but polylogarithmic query complexity and alphabet
size. We now study two methods for combining the best of both worlds to get polynomial
length proofs with constant soundness, alphabet size and query complexity. The methods
are code concatenation and proof composition. We start with an illustration of concatenation,
the simpler one.

6.1 Concatenation

Problem 6.1. Suppose C = {f : D — Fqr}, D C Fy: is a linear code of rate p over For —
the finite field of size 2¥. Recall that each entry y = f(z),z € D of a codeword f € C'is an
element y of For. Assume For-elements are represented using a basis by, ..., b, € Fyr that
is linearly independent over Fy. We thus get a transformation from Fyr to]]:'*"’2f . Concatenate
C with the k-dimensional Hadamard code by replacing y by the Hady encoding of y (cf.
Definition 3.2) for each = € For. Denote the concatenated code by C o Hady.

1. What are the alphabet, blocklength, rate, and relative distance of the concatenated
code?

2. Prove: If C'is a (q,¢,0)-LTC over alphabet Fox, then C oHady is a (¢/,¢’,¢')-LTC over
alphabet Fo. What are ¢/,&’,6'?

6.2 PCP of Proximity (PCPP)

The idea of proof composition was introduced by Arora and Safra [1998]|. The basic idea is
as follows. Assume we have a nonadaptive verifier V' which on CIRCUIT-SAT instance ¢ of
size n makes q(n) queries. Nonadaptivity means we can view V' as taking the randomness R
and computing from it two things: (i) a set of query indices Ir, and (ii) a decision predicate
Decg that decides whether to accept or reject the answers given by the proof oracle. The
crucial point is that Decg is an instance of CIRCUIT-SAT and typically its size is much
smaller than n. So we can request the prover to provide an auxiliary proof for each Decg
that V wishes to check. And then we compose V' with an inner verifier Vg that checks Decgr
using this auxiliary proof.

6-1

The main problem with this approach is that each individual Decp is satisfiable, so a ma-
licious prover can cheat by giving answers that are inconsistent with a proof that V' would
accept for ¢. One way to solve this problem is to use PCPs of Prozimity, introduced by
Ben-Sasson et al. [2004]; Dinur and Reingold [2004].

Definition 6.1 (PCP of Proximity (PCPP)). Let ¢ be an instance of CIRCUIT-SAT with
n wires. A ({,t,r,d,q,X)-restricted PCPP wverifier for ¢ is a randomized algorithm V' that
receives a randomness input R € {0,1}" and outputs after ¢ steps a sequence of ¢ indices
Ig = (i1,...,iq),ij € [n + {] along with a decision predicate Decg : X! — {accept, reject}
which is a circuit of size d with inputs in the finite alphabet 3. The parameter ¢ is called the
PCPP length. We say V has completeness ¢ € [0, 1] and soundness function s : [0,1] — [0, 1]
for C' if:

e Completeness: If o € {0,1}" satisfies ¢ then there exists m € ¢ such that

Reﬁ)l,nl}T [Deck ((aom)|r,) = accept] > ¢

where (oo 7)|7, € 217 is the restriction of o and 7 to the query set Ig. (Le., (o)
is a string of length n + ¢ over ¥ and we assume 3 D {0, 1}.)

e Soundness: If a € {0,1}" does not satisfy ¢, then for all 7 € X¢
Erefo,1y [Hamm ((a o 7)1, SAT(Decg))] > s(rHamm(a, SAT(¢))).

where SAT(¢) is the set of assignments satisfying ¢ (and SAT(Decp) is similarly
defined). If ¢ is not satisfiable (i.e., SAT(¢) = 00) we define rHamm(a, SAT(¢)) to be
1.

Finally, we say that ¢ has a (¢,t,r,d, q, %, ¢)-PCPP if it has a (¢,t,r,d, q, ¥)-restricted PCPP
verifier with completeness ¢ = 1 and soundness function satisfying s(d) > € 0.

Problem 6.2. Show that PCPPs imply PCPs: Suppose there exists a polynomial time
algorithm that for every CIRCUIT-SAT instance ¢ of size n produces a verifier Vy that gives

a (0, t,r,d,q,%,€)-PCPP. Then CIRCUIT-SAT € PCP [list of restrictions . Fill in

s
the restrictions and the value of ¢, s as a function of the parameters of the PCPP.

Problem 6.3. Let C = {w : [n] — Fa} be an [n, k, d]p,-linear code and ¢ a circuit deciding
membership in C, i.e., w € C iff ¢(w) = 1. (Such ¢ can be constructed given the parity
check matrix of C.) Suppose ¢ has a (¢,t,r,d,q,%, €)-PCPP. Then there exists a (¢, €, 0')-
LTC that can be constructed from C and the PCPP system. What are the basic coding
parameters of the LTC (i.e., alphabet, dimension, blocklength and distance)? What are
q,€,0")?

6-2

Problem 6.4. Convert our two PCP theorems — Theorem 3.1, Theorem 5.4 — into PCPP
theorems. What are the relevant parameters £,¢,r,d, q, €?

Problem 6.5. Prove the PCPP composition Theorem: If ¢ of size n has a ({,t,r,d,q,€)-
PCPP and every ¢’ of size d hasa (¢, ¢',r',d’, ¢, ¢')-PCPP, then ¢ has a (¢",¢" v, d", ¢", €")-
PCPP. What are (¢”,t",r",d",q",€") as a function of (¢,t,7,d,q,¢) and (¢, ¢, v, d' ¢, €)?

6-3

LECTURE 7

SOUNDNESS BOOSTING VIA GAP AMPLIFICATION

DECEMBER 31 2013
LECTURER: Eli Ben-Sasson ScriIBE: Eli Ben-Sasson

Both PCP Theorems we saw so far — Theorem 3.1 and Theorem 5.4 — used algebraic
methods to obtain a gap between completeness, which thus far has been perfect (i.e., c = 1),
and soundness. The method of PCPP proof composition (Problem 6.5) reduces soundness
while reducing query complexity and increasing proof length. We now study gap amplifica-
tton due to Dinur [2007], a method that boosts soundness efficiently. Later on we will see a
different method that achieves a similar effect, namely, parallel repetition Raz [1998].
Roughly speaking, gap amplification is a method that doubles the size of a CNF while
doubling the soundness parameter. In more words, it is reduction that maps a constraint
satisfaction problem (CSP) instance ¢ of arity 2 to a different CSP instance ¢’ of arity
2, where (i) ¢’ is only ¢ times larger than ¢ where ¢ is an absolute positive constant and
size is measured by number of constraints, (ii) if ¢ is satisfiable then so is ¢', and (i) If
every assignment falsifies at least an e-fraction of the constraints of ¢ then every assignment
falsifies at least a 2e-fraction of ¢. Formally,

Theorem 7.1 (Gap Amplification Theorem). There exists a constant size alphabet ¥ and
constant Smax > 0 such that

£ =1lo(n) £1(n) = O(lo(n))
q=2 q=2
E Cc = 1 E CcC =]_
PCP C PCP
r=ro(n) s =so(n) - ri(n) =ro(n) +O(1) | s(n) > min(2s0(n), Smax)
t < Ty(n) t < To + poly(£o(n)))
nonadaptive nonadaptive

Let us explore a few corollaries of this theorem.

Problem 7.1. Prove the following variant of Theorem 1.4 which obtains polynomial-length
PCPs with constant soundness, alphabet size and query complexity: There exists ¢ > 0 such
that

q = 2

by = 0(1) - 1
NTIME (T'(n)) C PCP | t(n) < poly(T(n)) 2 - .

(n) < poly(T(n)) -

nonadaptive

Problem 7.2. Prove the following variant of Theorem 1.3 with quasilinear length proofs and
constant soundness and alphabet size (but with non-succinct, polynomial, running time):

7-1

There exists € > 0 such that

t(n) < T(n)- polylog(T'(n))
t(n) < poly(T(n))

NTIME (T(n)) C PCP r(n) = log(¢(n)) +0O(1) c =1
q < 2 s > €
by = 0(1)
nonadaptive

Hints: Use Theorem 7.1 and the following quasilinear PCP result from Ben-Sasson and
Sudan [2005]:

{(n) = T(n)-polylog(T(n))
NTIME (T'(n)) C PCP L

polylog(T'(n))

M
Il

=

[N}

VA

7.1 Gap Amplification Theorem — Proof overview

It will be easier to prove Theorem 7.1 using graph theory, so we restate the theorem in this
language. To do this we need the following definition.

Definition 7.2 (Constraint Graphs and their soundness). A Constraint-Graph (CG) is
a triple ¢ = (G,X,C) where G = (V,E) is an undirected graph, with self loops and
multiple edges. X is an alphabet. C is a set of constraints, one for each edge: C' =
{C, : ¥ x ¥ — {accept, reject}|e € E}.

An assignment is a function A : V' — Y. The soundness of A is the fraction of the constraints
that are not satisfied by it,

S(A,G) = €€EPel(“u U)[Ce(A(u), A(v)) = reject].

The soundness of G is is the minimal soundness obtained by an assigment,
= mi A G).
5(G) = min_5(4,9)

For a soundness function S : Nt — [0,1], the language GAP-CG(X,S) is the promise
problem defined by

Yes = {Q|S(g) 0}
No = {G|S(G) > S(n)}

The following is a restatement of Theorem 7.1 using constraint graphs.

72

Theorem 7.3 (Theorem 7.1 restated with constraint graphs). For every sufficiently large 3
there exists a constant smax > 0 (depending on |X|) such that GAP-CG(X, s(n)) is reducible
in polynomial time to GAP-CG(X, min{2s(n), smax }), where n denotes the size of the graph,
and the reduction increases graph size only by a constant multiplicative factor.

7.2 Reduction to expander constraint graphs

There are three steps in the reduction of Theorem 7.3. First, the constraint graph Gy
is converted into a special kind of graph G;. The main attributes of GG; are that it has
constant degree, it is regular — all vertices have same number of neighbors, each vertex has
a self-loops, and, most importantly, it is ezpanding under the following definition.

Definition 7.4 (Expander graphs). Let d be an integer and A\ < d. A (d, \)-ezpander graph

G = (V,E) is a d-regular undirected graph with self-loops for each vertex, which satisfies:

For any F' C FE and ¢ > 0, the probability that a random walk stating at a random edge in
|F| '

F makes its (i + 1)-step in F' is at most i (%)Z.

The following lemma is the first step in the proof of Theorem 7.3, its proof is rather standard
and we omit it (cf. Dinur [2007]). It says that by incurring a constant reduction in soundness
we can assume without loss that our constraint graph is an expander.

Lemma 7.5 (Expanderizing). For every sufficiently large integer d and constant A\ >
2v/d — 1 there exists an absolute constant ¢y > 1 satisfying the following. GAP-CG(X, s(n))
is reducible in polynomial time to GAP-CG(X,s(n)/c1). Furthermore, a constraint graph
G with n edges is reduced to a constraint graph Gy over a (d,\)-ezpander graph with O(n)
vertices (and edges).

7.3 Repetition and gap amplification

To discuss the main step in the reduction, the one where soundness in increased, we define
the product of a constraint graph and its assignment.

Definition 7.6. Let § = (G = (V,E),X,C) be a constraint graph and ¢ be an integer.
The product graph G* = (V,E') has the same vertex set V as that of G, and for every
path p of length ¢ in G with endpoints vg, v; there is an edge labeled p from vy to v; in E.
Let B(v,t) denote the ball of radius ¢ around v, i.e., it is the set of vertices of distance at
most ¢ from v. An assignment to G' is a mapping which assigns to every v € V a label
fl(v) e ©BWY The constraint associated with path p (of length) with endpoints vg, vy
accepts an assignment A(vg), A(v1) if and only A(vg) and A(v;) agree on the assignment to
p and satisfy all constraints of G that pertain to edges on p.

Lemma 7.7 (Gap amplification). For every integers d, alphabet size |X| and constant A < d
there exists a constant [satisfying the following. If G is a constraint graph over a (d,\)-
expander and t an integer, then S(G') > B/t - min{S(G),1/t}.

73

The final part in the proof of Theorem 7.3 reduces the alphabet from |Z\dt back to a constant,
using PCPP composition.

Lemma 7.8 (Alphabet reduction). For every ¥/,|¥/| > || there exists a constant cg > 1
such that GAP-CG(X',s'(n)) is reducible to GAP-CG(X, s(n)/c3) via a polynomial time
reduction, which increases graph-size by at most a constant factor.

Problem 7.3. Prove Theorem 7.3 using the previous three lemmata.

-4

10.

11.

12.

13.

14.

15.

References

. Noga Alon and M Tarsi. Combinatorial nullstellensatz. Combinatorics Probability and Computing,

8(1):7-30, 1999.

. Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. Proof verification

and the hardness of approximation problems. J. ACM, 45(3):501-555, 1998. ISSN 0004-5411.

Sanjeev Arora and Shmuel Safra. Probabilistic Checking of Proofs: A New Characterization of NP.
J. ACM, 45(1):70-122, 1998.

. Sanjeev Arora and Madhu Sudan. Improved low-degree testing and its applications. Combinatorica,

23(3):365-426, 2003.

. Léaszl6 Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. Checking computations in

polylogarithmic time. In STOC ’91: Proceedings of the twenty-third annual ACM symposium on
Theory of computing, pages 21-32, New York, NY, USA, 1991. ACM Press. ISBN 0-89791-397-3.

Laszlo Babai and Shlomo Moran. Arthur-merlin games: A randomized proof system, and a hierarchy
of complexity classes. J. Comput. Syst. Sci., 36(2):254-276, 1988.

Mihir Bellare, Oded Goldreich, and Madhu Sudan. Free bits, PCPs, and nonapproximability —
towards tight results. SIAM Journal on Computing, 27(3):804-915, June 1998.

Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, and Eran Tromer. On the concrete efficiency of
probabilistically-checkable proofs. In STOC, pages 585594, 2013a.

Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, and Eran Tromer. Fast reductions from rams to
delegatable succinct constraint satisfaction problems: extended abstract. In ITCS, pages 401-414,
2013b.

Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil Vadhan. Robust pcps
of proximity, shorter pcps and applications to coding. In Proceedings of the thirty-sixth annual
ACM Symposium on Theory of Computing (STOC-04), pages 1-10, New York, June 13-15 2004.
ACM Press.

Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil P. Vadhan. Short pcps
verifiable in polylogarithmic time. In IEFE Conference on Computational Complexity, pages
120-134, 2005a.

Eli Ben-Sasson, Prahladh Harsha, and Sofya Raskhodnikova. Some 3cnf properties are hard to test.
SIAM Journal on Computing, 35(1):1-21, 2005b.

Eli Ben-Sasson and Madhu Sudan. Short PCPs with poly-log rate and query complexity. In STOC,
pages 266275, 2005.

Manuel Blum, Michael Luby, and Ronitt Rubinfeld. Self-testing/correcting with applications to
numerical problems. In STOC ’90: Proceedings of the twenty-second annual ACM symposium on
Theory of computing, pages 73-83, New York, NY, USA, 1990. ACM Press. ISBN 0-89791-361-2.

Dinur. The PCP theorem by gap amplification. JACM: Journal of the ACM, 54, 2007.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Irit Dinur and Omer Reingold. Assignment testers: Towards a combinatorial proof of the PCP-
theorem. In FOCS, pages 155-164, 2004. URL http://csdl. computer.org/comp/proceedings/
focs/2004/2228/00/22280155abs . htm.

Uriel Feige, Shafi Goldwasser, Laszlo Lovasz, Shmuel Safra, and Mario Szegedy. Interactive proofs
and the hardness of approximating cliques. J. ACM, 43(2):268-292, 1996. ISSN 0004-5411.

S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive proof systems.
SIAM J. Comput., 18(1):186-208, 1989. ISSN 0097-5397.

Johan Hastad. Some optimal inapproximability results. In STOC ’97: Proceedings of the twenty-
ninth annual ACM symposium on Theory of computing, pages 1-10, New York, NY, USA, 1997.
ACM Press. ISBN 0-89791-888-6.

F Florence Jessie MacWilliams and NJ Neil James Alexander Sloane. The Theory of Error-correcting
Codes: Part 2, volume 16. Elsevier, 1977.

Thilo Mie. Short pcpps verifiable in polylogarithmic time with o(1) queries. Ann. Math. Artif.
Intell., 56(3-4):313-338, 20009.

Dana Moshkovitz and Ran Raz. Two-query pcp with subconstant error. J. ACM, 57(5), 2010.

Dana Moshkovitz and Ran Raz. Sub-constant error low degree test of almost-linear size. SIAM
Journal on Computing, 38(1):140-180, 2008.

Ryan O’Donnell. A history of the PCP theorem. Course notes on the PCP Theorem and Hardness
of Approximation, Autumn 2005. URL http://www.cs.washington.edu/education/courses/
533/05au/pcp-history.pdf.

Alexander Polishchuk and Daniel A. Spielman. Nearly-linear size holographic proofs. In STOC ’9/:
Proceedings of the twenty-sizth annual ACM symposium on Theory of computing, pages 194-203,
New York, NY, USA, 1994. ACM Press. ISBN 0-89791-663-8.

Ran Raz. A parallel repetition theorem. SIAM Journal on Computing, 27(3):763-803, June 1998.

Ran Raz and Shmuel Safra. A sub-constant error-probability low-degree test, and a sub-constant
error-probability pcp characterization of np. In Proceedings of the twenty-ninth annual ACM
symposium on Theory of computing, pages 475-484. ACM, 1997.

Ronitt Rubinfeld and Madhu Sudan. Robust characterizations of polynomials with applications to
program testing. SIAM Journal on Computing, 25(2):252-271, April 1996.

http://csdl.computer.org/comp/proceedings/focs/2004/2228/00/22280155abs.htm
http://csdl.computer.org/comp/proceedings/focs/2004/2228/00/22280155abs.htm
http://www.cs.washington.edu/education/courses/533/05au/pcp-history.pdf
http://www.cs.washington.edu/education/courses/533/05au/pcp-history.pdf

	Title Page
	Lecture 1: Introduction
	1.1 Succinct Computational Integrity and Hardness of Approximation
	1.2 Complexity Classes defined by PCP verifiers
	1.3 Two variants of the PCP Theorem
	1.4 Bibliographical notes

	Lecture 2: Local codes
	2.1 Error correcting codes
	2.2 Testers for codeword integrity
	2.3 The BLR Theorem: Linearity functions are locally testable
	2.4 Proving the BLR Theorem

	Lecture 3: Hadamard code based PCP of exponential length
	3.1 Locally decodable codes
	3.2 Arithmetization

	Lecture 4: Low degree testing of multivariate polynomials
	4.1 Reed-Solomon (RS) and Reed-Muller (RM) codes
	4.2 Low degree testing
	4.3 The ``Plane-vs.-Plane'' tester

	Lecture 5: Arithmetization using low degree polynomials
	5.1 Arithmetization: From circuit-SAT to ACSP-SAT
	5.2 Zero-testing: From ACSP-SAT to low-degree testing
	5.3 A polynomial length, polylogarithmic query, PCP Theorem

	Lecture 6: PCPs of Proximity and Proof Composition
	6.1 Concatenation
	6.2 PCP of Proximity (PCPP)

	Lecture 7: Soundness boosting via gap amplification
	7.1 Gap Amplification Theorem — Proof overview
	7.2 Reduction to expander constraint graphs
	7.3 Repetition and gap amplification

	References

